|
Tags: Manual revert Replaced |
(241 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
| Here we take a brief look at the history of the laboratory to help give perspective about ''why'' they're important to modern life.
| | <div class="nonumtoc">__TOC__</div> |
| | {{ombox |
| | | type = notice |
| | | style = width: 960px; |
| | | text = This is sublevel5 of my sandbox, where I play with features and test MediaWiki code. If you wish to leave a comment for me, please see [[User_talk:Shawndouglas|my discussion page]] instead.<p></p> |
| | }} |
|
| |
|
| <div align="center">-----Return to [[User:Shawndouglas/sandbox/sublevel4|the beginning]] of this guide-----</div>
| | ==Sandbox begins below== |
| __TOC__
| |
| | |
| ==Laboratories: A historical perspective== | |
| | |
| ===Introduction===
| |
| | |
| ===Origins of the laboratory===
| |
| Among the earliest known organized scientific study was that under the rule of the early Ptolomies of Alexandria in the third century B.C. While little to no evidence seems to exist for public or organized laboratories during this time period, researchers and historians widely accept the idea that at least organized and individual research (meaning "direct personal contact with the objects of study, and by the aid of such appliances as were then available"<ref name="WelchTheEvolution20">{{cite book |url=http://books.google.com/books?id=utc0AQAAMAAJ&pg=200 |chapter=The Evolution of Modern Scientific Laboratories |title=Papers and Addresses by William Henry Welch |author=Welch, William Henry |volume=3 |publisher=The Johns Hopkins Press |year=1920 |pages=200–211}}</ref>) into anatomy, physiology, and medicine took place.<ref name="ZilselTheSocial03">{{cite book |title=The Social Origins of Modern Science |chapter=The Genesis of the Concept of Scientific Progress and Cooperation |series=Boston Studies in the Philosophy of Science |author=Zilsel, E. |editor=Cohen, R.S., Wartofsky, M.W. |publisher=Kluwer Academic Publishers |year=2003 |pages=130–171 |isbn=1402013590}}</ref><ref name="MartinSomeThoughts1888">{{cite book |url=https://books.google.com/books?id=Raw-AQAAMAAJ&pg=PA256 |title=Physiological Papers |chapter=Some Thoughts About Laboratories |author=Martin, H.N. |publisher=The John Hopkins Press |pages=256–264 |year=1895}}</ref><ref name="WelchTheEvolution20" /><ref name="SerageldinAncient13">{{cite journal |title=Ancient Alexandria and the dawn of medical science |journal=Global Cardiology Science & Practice |author=Serageldin, I. |volume=2013 |issue=4 |pages=395–404 |year=2013 |doi=10.5339/gcsp.2013.47 |pmid=24749113 |pmc=PMC3991212}}</ref> Dissections and experiments took place, but certainly not in an organized teaching or research laboratory setting like today. Early twentieth-century philosopher of science Edgar Zilsel suggests that scientific endeavor was non-collaborative in this early era, and the laboratory as a collaborative environment simply didn't exist<ref name="ZilselTheSocial03" />:
| |
| | |
| <blockquote>No publications, no astronomical or geographical investigation which are the work of several collaborating scientists are known. Even the learned compendia of the Roman period (Varro, Pliny, Celsus) and the encyclopedias of late antiquity (Boëthius) were composed by single polyhistors. There is no evidence that the Alexandrian Museum conjointly carried out investigations. Laboratories, the birth places of scientific co-operation in the modern era, existed neither in the Alexandrian Museum, nor in the Academy, nor in the Lyceum. As far as the fellow scholars of the museum did not work each for himself they might have contented themselves with dinners and debates. And of course, there were in antiquity no scientific periodicals in which new findings could have been discussed.</blockquote>
| |
| | |
| With scientific advancement and discovery still largely a personal (i.e, prestigious) goal, even through the Renaissance humanists of the fourteenth through sixteenth century A.D.<ref name="ZilselTheSocial03" />, it would take quite some time for both the private and public laboratory to evolve. To be certain, private laboratories surely existed, from Aristotle<ref name="WelchTheEvolution20" /> (third century B.C.) to the anatomical laboratory — "the first scientific laboratory" — that began to take hold in the late thirteenth to early fourteenth century<ref name="WelchTheEvolution20" /><ref name="WalkerClinical90">{{cite book |url=https://www.ncbi.nlm.nih.gov/books/NBK201/ |title=Clinical Methods: The History, Physical, and Laboratory Examinations |chapter=Chapter 1: The Origins of the History and Physical Examination |author=Walker, H.K. |editor=Walker, H.K.; Hall, W.D.; Hurst, J.W. |edition=3rd |publisher=Butterworths |year=1990 |isbn=040990077X}}</ref>, all the way to the "zenith" of the alchemical research laboratory in the second half of the sixteenth century.<ref name="Martinón-TorresA16th03">{{cite journal |title=A 16th century lab in a 21st century lab: Archaeometric study of the laboratory equipment from Oberstockstall (Kirchberg am Wagram, Austria) |journal=Antiquity |author=Martinón-Torres, M.; Rehren, T.; von Osten, S. |volume=77 |issue=298 |url=http://antiquity.ac.uk/projgall/martinon298}}</ref> But it wouldn't be until the late sixteenth to early seventeenth century that collaboratory science and the first university-affiliated labs would appear.
| |
| | |
| Zilsel claims that Italian polymath Galileo Galilei, while teaching at the University of Padua from 1592 to 1610, founded the first university-affiliated laboratory in his own home, with help from craftsmen who aided in researching architectural and mechanical concepts.<ref name="ZilselTheSocio00">{{cite journal |title=The Sociological Roots of Science |journal=Social Studies of Science |author=Zilsel, E. |volume=30 |issue=6 |pages=935–949 |year=2000 |url=http://www.jstor.org/stable/285793}}</ref> As Galileo was nearing completion of his professorship at Padua, chemist Johannes Hartmann opened up a university laboratory for students at the University of Marburg in 1609, albeit for "instruction not in [chemical] analysis — still in a very rudimentary state — but in pharmaceutical preparations."<ref name="IhdeTheDevelop84">{{cite book |url=https://books.google.com/books?id=89BIAwAAQBAJ&pg=PA262 |title=The Development of Modern Chemistry |chapter=Chapter 10: The Diffusion of Chemical Knowledge |author=Ihde, A.J. |publisher=Dover Publications |pages=259–276 |year=1984 |isbn=0486642356}}</ref> One of the first actual public laboratories dedicated to chemical instruction was founded later that century, in 1683, hosted at the University of Altdorf, created and directed by physician and professor Johan Moritz Hofmann.<ref name="IhdeTheDevelop84" /><ref name="WiechmannChemistry1899">{{cite book |url=https://books.google.com/books?id=z4k-AAAAYAAJ&pg=PA83 |title=Chemistry: Its Evolution and Achievements |author=Wiechmann, F.G. |series=Science Sketches |publisher=William R. Jenkins |location=New York |pages=176 |year=1899}}</ref><ref name="LockemannFriedrich53">{{cite journal |title=Friedrich Stromeyer and the history of chemical laboratory instruction |journal=Journal of Chemical Education |author=Lockemann, G.; Oesper, R.E. |volume=30 |issue=4 |pages=202–204 |year=1953 |doi=10.1021/ed030p202}}</ref> That same year the (Old) Ashmolean played host to Britian's first university laboratory, directed by chemistry chair Robert Plot.<ref name="BowenTheBalliol70">{{cite journal |title=The Balliol-Trinity Laboratories, Oxford 1853-1940 |journal=Notes and Records of the Royal Society of London |author=Bowen, E.J. |volume=25 |issue=2 |pages=227–236 |year=1970 |url=http://www.jstor.org/stable/530877}}</ref><ref name="Martinón-TorresTheArch11">{{cite journal |title=The Archaeology of Alchemy and Chemistry in the Early Modern World: An Afterthought |journal=Archaeology International |author=Martinón-Torres, M. |volume=15 |pages=33–36 |year=2011-2012 |doi=10.5334/ai.1508}}</ref>
| |
| | |
| By the end of the seventeenth century, textbooks on various subjects such as anatomy<ref name="BartholinTheAnat15">{{cite book |url=https://books.google.com/books?id=Y9o_CgAAQBAJ&pg=PA20 |title=he Anatomy House in Copenhagen |author=Bartholin, T. |publisher=Museum Tusculanum Press |pages=222 |year=2015 |isbn=9788763542593}}</ref> and chemistry<ref name="WiechmannChemistry1899" /> were becoming more notable, and numerous vital scientific measurement and observation devices — including astronomy equipment — had been created.<ref name="BronfenbrennerTheRole1913">{{cite book |url=https://books.google.com/books?id=-v4CAAAAIAAJ&pg=PA11 |title=The Role of Scientific Societies in the Seventeenth Century |author=Bronfenbrenner, M.O. |publisher=University of Chicago Press |location=Chicago |pages=308 |year=1913}}</ref> And most importantly, as early twentieth century political science researcher Martha Ornstein put it, after much build-up, finally "the [public] chemical and physical laboratory existed in embryonic form."<ref name="BronfenbrennerTheRole1913" />
| |
| | |
| ===Eighteenth- and nineteenth-century laboratories===
| |
| The eighteenth century saw the "embryonic" laboratories develop further, but in truth in wasn't until the nineteenth century that the age of the laboratory in academic, hospital, and — particularly in the latter half of the century<ref name="WelchTheEvolution20" /><ref name="MMJSimon">{{cite journal |url=http://books.google.com/books?id=dooRAAAAYAAJ&pg=PA55 |journal=Maryland Medical Journal |title=The Importance of Laboratory Methods in Diagnosis |author=Simon, Charles E. |volume=35 |issue=4 |pages=55–57 |date=9 May 1896 |accessdate=28 June 2017}}</ref><ref name="ShoemakerChemical1884">{{cite journal |url=http://books.google.com/books?id=DmQWAAAAYAAJ&pg=PA277 |journal=The Medical Bulletin: A Monthly Journal of Medicine and Surgery |title=Chemical Department at Jefferson Medical College |author=Shoemaker, John V. (ed.) |volume=6 |issue=11 |pages=277–278 |date=November 1884 |accessdate=28 June 2017}}</ref><ref name="ElliottEditorial1898">{{cite journal |url=http://books.google.com/books?id=bcjRAAAAMAAJ&pg=PA57 |journal=Journal of Applied Microscopy |title=Editorial |author=Elliott, L. B. |volume=1 |issue=3 |date=March 1898 |pages=57–58 |accessdate=28 June 2017}}</ref> — physician settings began to bloom. Some historians describe the changes that took place during these centuries as a transition from natural philosophy — sometimes referred to as "experimental philosophy" — and its "philosophical instruments" to natural or empirical science (or "physics," but not in the modern sense<ref name="BuchwaldPhysics03">{{cite book |url=https://books.google.com/books?id=k5qgGcZVOugC&pg=PA163 |title=From Natural Philosophy to the Sciences: Writing the History of Nineteenth-Century Science |chapter=Chapter 6: Physics |author=Buchwald, J.Z.; Hong, S. |editor=Cahan, D. |publisher=University of Chicago Press |year=2003 |pages=163–195 |isbn=9780226089287}}</ref>) and the laboratory instruments used to better analyze and describe the physical and life sciences.<ref name="BuchwaldPhysics03" /><ref name="BennettCabinets13">{{cite book |url=https://books.google.com/books?id=DJKiWjpCgAkC&pg=PA4 |title=Cabinets of Experimental Philosophy in Eighteenth-Century Europe |chapter=Cabinets for Experimental Philosophy in the Netherlands |author=Zuidervaart, H.J. |editor=Bennett, J.; Talas, S. |publisher=Brill |year=2013 |pages=1–26 |isbn=9789004252974}}</ref><ref name="KleinTheLab08">{{cite journal |title=The Laboratory Challenge: Some Revisions of the Standard View of Early Modern Experimentation |journal=Isis |author=Klein, U. |volume=99 |issue=4 |pages=769-782 |year=2008 |doi=10.1086/595771}}</ref>
| |
| | |
| Even by the late eighteenth century, the laboratory was still viewed as a "workshop," a place for material (chemicals, colored glass, etc.) production.<ref name="SchmidgenTheLab11">{{cite web |url=http://www.ieg-ego.eu/schmidgenh-2011-en |title=The Laboratory |work=European History Online (EGO) |author=Schmidgen, H. |publisher=Institute of European History |date=08 August 2011 |accessdate=28 June 2017}}</ref> However, instances of scientists beginning to view laboratory teaching and hands-on analysis as vital slowly began to spring forth. For example, the laboratory teaching of practical or "physical chemistry" — separating itself even further by several decades from alchemical study — first took place in St. Petersburg, Russia in 1751 under the professorship of Mikhail Lomonosov. Two years prior he had built for him a small 15 x 9 meter brick structure where he developed colored glasses for mosaics, but he quickly turned his focus towards using the laboratory to teach students in physical chemistry, "a science which must explain by means of physical laws and experiments the cause of changes produced by chemical operations in composite bodies."<ref name="MenschutkinARussian1927">{{cite journal |title=A Russian physical chemist of the eighteenth century |journal=Journal of Chemical Education |author=Menschutkin, B.N. |volume=4 |issue=9 |pages=1079–1087 |year=1927 |doi=10.1021/ed004p1079}}</ref> Three years later in Berlin, the Prussian Academy of Sciences' academic laboratory was founded with materials from a previously associated artisanal lab, signalling a shift "from commercial production to systematic observation and experimental exploration of the properties and chemical transformations of material substances."<ref name="KleinTheLab08" />
| |
| | |
| Speaking of German kingdoms, universities and associated laboratories in the region continued to build a renowned reputation on into the early and mid-nineteenth century.<ref name="SchmidgenTheLab11" /><ref name="MechanicsTheLab1884">{{cite journal |url=https://books.google.com/books?id=yAZHAQAAMAAJ&pg=PA290 |title=The Laboratory in Modern Science |journal=Mechanics |publisher=David Williams |volume=5 |issue=120 |date=19 April 1884 |page=290}}</ref> In 1806, Friedrich Stromeyer, fresh from being named "extraordinary professor" after the death of Johann Friedrich Gmelin, took over as director of University of Göttingen's chemical laboratory. Stromeyer's strong opinion that students could only learn chemistry best through practice and self-analysis led to a subtle but significant change: the development of one of the first university laboratories in Germany to offer students hands-on chemical analysis.<ref name="LockemannFriedrich53" /><ref name="IhdeTheDevelop84" /> Following a similar path, Czech physiologist Johannes Evangelista Purkinje, upon being appointed a professor at the University of Breslau (then a part of Germany), set up a private physiology laboratory in 1824 within his own house and taught students from it. Impressed by his work, the government eventually helped Purkinje set up the world's first professional physiology laboratory in 1842, known as the Physiological Institute.<ref name="GarrisonAnIntro1921">{{cite book |url=https://books.google.com/books?id=JvoIAAAAIAAJ&pg=PA486 |title=An Introduction to the History of Medicine |author=Garrison, F.H. |publisher=W.B. Saunders Company |chapter=XI: The Nineteenth Century: The Beginnings of Organized Advancement of Science |edition=3rd |year=1921 |pages=486–488}}</ref><ref name="MechanicsTheLab1884" /> And in 1826, at the University of Giessen, influential chemist Justus Liebig began perhaps not the first but definitely one of the more influential teaching and analysis laboratories, his work influencing the future direction of German as well as international universities and institutes.<ref name="HolmesTheComp89">{{cite journal |title=The Complementarity of Teaching and Research in Liebig's Laboratory |journal=Osiris |author=Holmes, F.L. |volume=5 |pages=121-164 |url=http://www.jstor.org/stable/301795}}</ref><ref name="IhdeTheDevelop84" /> That carried over to Wilhelm Weber's physics lab at Göttingen University (1833), Franz Neumann's physics lab in Königsberg (1847), Robert Bunsen's chemical teaching and research laboratory in Heidelberg (c. 1850), and Johann N. Czermak's ''spectatorium'' for physiology teaching in Leipzig (c. 1870).<ref name="SchmidgenTheLab11" />
| |
| | |
| By the late eighteenth century, other countries were marveling at the laboratories of the German-speaking countries.<ref name="SchmidgenTheLab11" /><ref name="MechanicsTheLab1884" /> Industrial labs were beginning to pop up around the world, including the United States, with researchers "interested in getting patents recognized so as to have commercial control of the processes and products involved in their research."<ref name="SchmidgenTheLab11" /> Even physician laboratories were beginning to take shape at the turn of the century as instruments such as centrifuges, microscopes, and microtomes became slightly easier to acquire.<ref name="ElliottEditorial1898" /><ref name="BartleyManualOfClin1899">{{cite book |url=http://books.google.com/books?id=FqPVAAAAMAAJ&pg=PA53 |title=Manual of Clinical Chemistry |author=Bartley, Elias H. |publisher=P. Blakiston's Son & Co |year=1899 |page=53 |accessdate=28 June 2017}}</ref> The role-based division of responsibilities within laboratories was also becoming entrenched into labs by the end of the century.<ref name="SchmidgenTheLab11" /><ref name="MechanicsTheLab1884" />
| |
| | |
| ===Modern laboratories and their importance===
| |
| The twentieth century saw laboratories of all kinds grow, develop, and mature, though not without their share of difficulties. In the 1920s, for example, some U.S. physicians, specialists, and dentists complained heavily of the lack of quality standards, regulations, and ethics inherent in for-profit clinical, chemical, and radiological laboratories.<ref name="TaylorAdvert1920">{{cite journal |url=http://books.google.com/books?id=LbEDAAAAYAAJ&pg=PA229 |journal=Texas State Journal of Medicine |title=Advertising Medical Laboratories (Encore) |author=Taylor, Holman (ed.) |volume=16 |issue=6 |date=October 1920 |pages=229–230 |accessdate=28 June 2017}}</ref><ref name="SondernCommer1921">{{cite journal |url=http://books.google.com/books?id=j7hYAAAAYAAJ&pg=PA390 |journal=New York State Journal of Medicine |title=Commercial Laboratories |author=Sondern, Frederic E. (ed.) |volume=21 |issue=10 |date=October 1921 |page=390 |accessdate=28 June 2017}}</ref><ref name="WhiteTheRole1922">{{cite journal |url=http://books.google.com/books?id=OTMTAAAAYAAJ&pg=PA755 |journal=Kentucky Medical Journal |title=The Role of the Nonmedical Graduate in the Medical Laboratory |author=White, Courtland Y. |volume=25 |issue=11 |date=August 1922 |pages=755–760 |accessdate=28 June 2017}}</ref><ref name="SundelofTheBus1922">{{cite journal |url=http://books.google.com/books?id=E741AQAAMAAJ&pg=PA442 |journal=The Boston Medical and Surgical Journal |title=The Business Side of X-ray Diagnosis and Treatment |author=Sundelof, E. M. |volume=186 |issue=13 |date=30 March 1922 |pages=442–444 |accessdate=28 June 2017}}</ref> Also in the U.S., a fundamental transition took place after World War II, shifting many perceptions of what was the "Western" world from Europe to the U.S. Additionally, there was the post-war shift of focus from the philosophical an theoretical laboratorians to the experimental and practical lab researcher<ref name="PestreScience13">{{cite book |url=https://books.google.com/books?id=ZYUfAgAAQBAJ&pg=PA71 |title=Science in the Twentieth Century |chapter=Chapter 4: Science, Political Power and the State |author=Pestre, D. |editor=Krige, J.; Pestre, D. |publisher=Routledge |year=2013 |pages=61–76 |isbn=9057021722}}</ref>:
| |
| | |
| <blockquote>Fundamental theorists were still essential, and they were highly respected, but they no longer had that mythical status which was accorded to the founders of quantum mechanics. They were also in minority with those (the "phenomenologists") whose job it was to deal with the mass of experimental results produced in the laboratories. Seeking theories which were locally coherent and which could be immediately useful and produce numbers, their role was to display a practical efficiency. They thus participated in the development of a science which was increasingly integrated into its economic and political environment, and contributed to the multiplications of the sites where knowledge was produced. These were now the universities and the technical institutes, the national laboratories and the industrial laboratories (Siemens or General Electric), but also the myriad of small firms established as a result of government contracts.</blockquote>
| |
| | |
| ==Further reading==
| |
| | |
| * {{cite book |url=https://books.google.com/books?id=DJKiWjpCgAkC&pg=PA4 |title=Cabinets of Experimental Philosophy in Eighteenth-Century Europe |editor=Bennett, J.; Talas, S. |publisher=Brill |year=2013 |pages=296 |isbn=9789004252974}}
| |
| | |
| * {{cite journal |title=The Laboratory Challenge: Some Revisions of the Standard View of Early Modern Experimentation |journal=Isis |author=Klein, U. |volume=99 |issue=4 |pages=769-782 |year=2008 |doi=10.1086/595771}}
| |
| | |
| * {{cite web |url=http://www.ieg-ego.eu/schmidgenh-2011-en |title=The Laboratory |work=European History Online (EGO) |author=Schmidgen, H. |publisher=Institute of European History |date=08 August 2011}}
| |
| | |
| * {{cite book |url=http://books.google.com/books?id=utc0AQAAMAAJ&pg=200 |chapter=The Evolution of Modern Scientific Laboratories |title=Papers and Addresses by William Henry Welch |author=Welch, William Henry |volume=3 |publisher=The Johns Hopkins Press |year=1920 |pages=200–211}}
| |
| | |
| ==References==
| |
| {{Reflist|colwidth=30em}}
| |
| | |
| <!--Place all category tags here-->
| |