Difference between revisions of "User:Shawndouglas/sandbox/sublevel13"

From LIMSWiki
Jump to navigationJump to search
Tag: Reverted
 
(16 intermediate revisions by the same user not shown)
Line 1: Line 1:
We conclude our examination of 20 broad industry categories and the laboratories associated with them, looking at the final five. For each you'll find a brief description with common services and how the lab type affects the average person. As discussed previously, using our client type + function model we dig into examples found in the private, government, and academic sectors and then outline function through activities, sciences, test types, equipment, and unique attributes. A discussion follows in the section after.
<div class="nonumtoc">__TOC__</div>
{{ombox
| type      = notice
| style    = width: 960px;
| text      = This is sublevel13 of my sandbox, where I play with features and test MediaWiki code. If you wish to leave a comment for me, please see [[User_talk:Shawndouglas|my discussion page]] instead.<p></p>
}}


<div align="center">-----Return to [[LII:The Laboratories of Our Lives: Labs, Labs Everywhere!|the beginning]] of this guide-----</div>
==Sandbox begins below==
__TOC__
<div class="nonumtoc">__TOC__</div>


==6. Labs by industry: Part 4==
<!--{{LIMS Selection Guide for Manufacturing Quality Control/Taking the next step/Conduct initial research into a specification document tailored to your lab's needs}}//-->
===Nanotechnology===
==5. Taking the next step==
[[File:Two microgrippers.jpg|left|400px]]
[[File:Specification leading to Design Documents.jpg|right|500px]]In section 3.4 of this guide, we briefly discussed how a user requirements specification (URS) fits into the process of purchasing [[laboratory informatics]] solutions for your manufacturing-focused [[laboratory]]. The URS has been viewed as a means for the purchaser to ensure their needs are satisfied by the functionality of the software. Traditionally, this has turned into a "wish list" for the purchaser, which while somewhat practical still lacks in its finesse. One common problem with this wishlist approach is the risk of "requirements creep," where more functionality than is truly necessary is desired, inevitably leading to a state where no vendor can meet all the wishlisted requirements. This makes selecting a solution even more difficult, particularly without significant prioritization skills.<ref name="AasemAnalysis10">{{cite journal |title=Analysis and optimization of software requirements prioritization techniques |author=Aasem, M.; Ramzan, M.; Jaffar, A. |journal=Proceedings from the 2010 International Conference on Information and Emerging Technologies |pages=1–6 |year=2010 |doi=10.1109/ICIET.2010.5625687}}</ref><ref name="Hirsch10Steps13">{{cite web |url=https://www.phase2technology.com/blog/successful-requirements-gathering |title=10 Steps To Successful Requirements Gathering |author=Hirsch, J. |publisher=Phase2 Technology, LLC |date=22 November 2013 |accessdate=07 December 2022}}</ref><ref name="BurrissSoftware07">{{cite web |url=http://sce2.umkc.edu/BIT/burrise/pl/requirements/ |archiveurl=https://web.archive.org/web/20190925003040/http://sce2.umkc.edu/BIT/burrise/pl/requirements/ |title=Requirements Specification |work=CS451R, University of Missouri–Kansas City |author=Burris, E. |publisher=University of Missouri–Kansas City |date=2007 |archivedate=25 September 2019 |accessdate=07 December 2022}}</ref>
{{clear}}
Nanoscience is the study of objects (materials, structures, devices) and phenomena on the nanometer scale. Physicist Richard Feynman's talk titled "There's Plenty of Room at the Bottom" at the end of 1959 helped spark an exploration today of the world of the fantastically small<ref name="NanoGovWhatIs">{{cite web |url=https://www.nano.gov/nanotech-101/what/definition |title=What is Nanotechnology? |work=Nano.gov |publisher=United States National Nanotechnology Initiative |accessdate=29 June 2022}}</ref>, one that has spawned a great number of discoveries and inventions based on nanoscience.<ref name="NanoGovNanoTime">{{cite web |url=https://www.nano.gov/timeline |title=Nanotechnology Timeline |work=Nano.gov |publisher=United States National Nanotechnology Initiative |accessdate=29 June 2022}}</ref> From quantum computing to cellulose nanomaterials, private, public, and academic [[Laboratory|labs]] of all types are improving the way we construct, work, and play. These labs provide many different services, including (but not limited to)<ref name="GoddardHandbook12">{{cite book |url=https://books.google.com/books?id=dJ-jIv1Hv2EC&printsec=frontcover |title=Handbook of Nanoscience, Engineering, and Technology |editor=Goddard, W.A.; Brenner, D.W.; Lyshevski, S.E.; Iafrate, G.J. |publisher=CRC Press |edition=3rd |pages=1093 |year=2012 |isbn=9781439860151}}</ref> :


* characterization and testing of nanoscale devices and materials
Noting the potential problems with this wishlist approach, [[LII:LIMSpec 2022 R2|LIMSpec]]—a specification document for laboratory informatics solutions—took a new approach and turned to standards and regulations that drive laboratories of all types, as well as the data they manage. LIMSpec was rebuilt based on [[ASTM E1578|ASTM E1578-18]] ''Standard Guide for Laboratory Informatics'', as well as dozens of other standards and regulations, while still leaving room for a software buyer to add their own custom requirements for their industry or lab.
* improvement of the performance of existing technologies and materials
* development of new materials
* research and development of nanosafety plans
* research and development of nanotech standards
* research and development of nanomanufacturing and -measurement equipment
* development of nanomedicines


''But how do nanotechnology laboratories intersect the average person's life on a daily basis?''  
The rest of this chapter examines the research, documentation, and acquisition process that manufacturing labs needing laboratory informatics solutions will want to go through, with an emphasis on the utility of a sound requirements specification. While LIMSpec is offered as a solid starting point, you don't strictly need to use LIMSpec to conduct this process; the information in this chapter can largely be applied with or without LIMSpec itself.


As the technology and research around nanotechnology is still in somewhat of an infant phase, it's less clear how these labs affect the average person. The fact that by definition visualizing the design of nanotechnology due to its nano scale is challenging doesn't make relating to nanotech labs any easier either. The idea of the quantum computer, a computational device utilizing nature's small-scale physics, is still in early development, but nanotechnology labs such as MIT's Lincoln Lab continue to research and apply nanoscience to the hardware that could make up the first practical quantum computer.<ref name="HardestyToward16">{{cite web |url=https://news.mit.edu/2016/toward-practical-quantum-computers-0808 |title=Toward practical quantum computers |author=Hardesty, L. |work=MIT News |publisher=Massachusetts Institute of Technology |date=08 August 2016 |accessdate=29 June 2022}}</ref> Moving from the theoretical to the more applicable, the United States National Nanotechnology Initiative list several applications of nanotechnology found in products today, including solar panel films, windmill blades, gas lift valves, and airplane cabin filters.<ref name="NanoGovBenefits">{{cite web |url=https://www.nano.gov/about-nanotechnology/applications-nanotechnology |title=Applications of Nanotechnology |work=Nano.gov |publisher=United States National Nanotechnology Initiative |accessdate=29 June 2022}}</ref>


====Client types====
===5.1 Conduct initial research into a specification document tailored to your lab's needs===
A specification is "a detailed precise presentation of something or of a plan or proposal for something."<ref name="MWSpec">{{cite web |url=https://www.merriam-webster.com/dictionary/specification |title=specification |work=Merriam-Webster |publisher=Merriam-Webster, Inc |accessdate=07 December 2022}}</ref> This concept of a specification as a presentation is critical to the laboratory seeking to find laboratory informatics software that fulfills their needs; they "present" their use case with the help of a requirements specification, and the vendor "presents" their ability (or inability) to comply through documentation and demonstration (more on that later). However, even the most seasoned of presenters at conferences and the like still require quality preparation before the presentation. This is where initial specification research comes into play for the lab.


'''Private''' - Private nanotech labs are usually associated with a major company or part of a private-public partnership, as the equipment to analyze and manufacture at the nano scale can be costly.
Your lab's requirements specification document will eventually be a critical component for effectively selecting a laboratory informatics solution. There are numerous ways to approach the overall development of such a document. But why re-invent the wheel when others have already gone down that road? Sure, you could search for examples of such documents on the internet and customize them to your needs, or you and your team could brainstorm how a laboratory informatics solution should help your lab accomplish its goals. LIMSpec makes for one of the more thorough starting points to use, though you could also use other structured documents that have been developed by others. For the purposes of this guide, we'll look at LIMSpec.


Examples include:
The version of LIMSpec included in Appendix 1 of this guide is a slightly tweaked version of the original [[Book:LIMSpec 2022 R2|LIMSpec 2022]] document, omitting a few of the specialty laboratory functions that aren't applicable to manufacturing laboratories. You'll note that it's divided into five distinct sections, with numerous subsections in each:


* [https://www.hpl.hp.com/research/about/quantum_processing.html Hewlett-Packard Laboratories' Quantum Information Processing Group]
* Primary Laboratory Workflow
* [https://www.nanotechlabs.com/ NanoTechLabs, Inc.]
** 1. Sample and experiment registration
* [http://english.nanoctr.cas.cn/au/bi/ National Center for Nanoscience and Technology]
** 2. Sample management
** 3. Core laboratory testing and experiments
** 4. Results review and verification
** 5. Sample, experiment, and study approval and verification
** 6. Reporting
* Maintaining Laboratory Workflow and Operations
** 7. Document and records management
** 8. Resource management
** 9. Compliance management
** 10. Instrument and equipment management
** 11. Batch and lot management
** 12. Scheduled event management
** 13. Instrument data capture and control
** 14. Standard and reagent management
** 15. Inventory management
** 16. Investigation and quality management
* Specialty Laboratory Functions (minus non-relevant industries)
** 17. Production management
** 18. Statistical trending and control charts
** 19. Agriculture and food data management
** 24. Scientific data management
* Technology and Performance Improvements
** 26. Instrument data systems functions
** 27. Systems integration
** 28. Laboratory scheduling and capacity planning
** 29. Lean laboratory and continuous improvement
** 30. Artificial intelligence and smart systems
* Security and Integrity of Systems and Operations
** 31. Data integrity
** 32. Configuration management
** 33. System validation and commission
** 34. System administration
** 35. Cybersecurity
** 36. Information privacy


'''Government''' - Government-based nanotechnology labs are typically themed towards a certain sub-branch, from nanomedicine (cancer research) to military (war machines).
These sections and subsections should be able to address most any requirement you have for your system. Of course, if something isn't covered by LIMSpec, you can always add additional requirements.  


Examples include:
During the initial research towards your URS, you won't have to include every requirement for when you approach potential vendors. Most vendors appreciate a more inviting approach that doesn't overwhelm, at least initially. You will want to go with a limited yet practical set of requirements carefully chosen because they matter to you and your laboratory the most. In fact, you'll want to wait until after participating in several software demonstrations before even considering your URS to be complete. (More on that in 5.3.1.) This naturally leads us to a discussion about the RFI process.


* [https://nrc.canada.ca/en/research-development/research-collaboration/research-centres/nanotechnology-research-centre/ National Research Council of Canada Nanotechnology Research Centre]
* [https://www.cancer.gov/nano/research/ncl U.S. National Cancer Institute's Nanotechnology Characterization Laboratory]
* [https://www.nrl.navy.mil/nanoscience/about/ U.S. Naval Research Laboratory's Nanoscience Research Laboratory]


'''Academic''' - The nanotech labs of higher education tend to have a focus on post-graduate education and research, occasionally subcontracting its expertise out to the private domain.
<!--{{LIMS Selection Guide for Manufacturing Quality Control/Taking the next step/Issue some of the specification as part of a request for information (RFI)}}//-->
===5.2 Issue some of the specification as part of a request for information (RFI)===
In some cases—particularly if your organization is of significant size—it may make sense to issue a formal RFI or request for proposal (RFP) and have laboratory informatics vendors approach your lab with how they can meet its needs. The RFI and RFP are traditional means towards soliciting bidding interest in an organization's project, containing the organization's specific requirements and vital questions that the bidder should be able to effectively answer. However, even if your organization chooses to skip the RFI or RFP process and do most of the investigative work of researching and approaching informatics vendors, turning to a key set of questions typically found in an RFI is extremely valuable towards your fact finding.


Examples include:
An RFI is an ideal means for learning more about a potential solution and how it can solve your problems, or for when you're not even sure how to solve your problem yet. However, the RFI should not be unduly long and tedious to complete for prospective vendors; it should be concise, direct, and honest. This means not only presenting a clear and humble vision of your own organization and its goals, but also asking just the right amount of questions to allow potential vendors to demonstrate their expertise and provide a clearer picture of who they are. Some take a technical approach to an RFI, using dense language and complicated spreadsheets for fact finding. However, as previously noted, you will want to limit the specified requirements in your RFI to those carefully chosen because they matter to you and your lab the most.<ref name="HolmesItsAMatch">{{cite web |url=https://allcloud.io/blog/its-a-match-how-to-run-a-good-rfi-rfp-or-rfq-and-find-the-right-partner/ |title=It's a Match: How to Run a Good RFI, RFP, or RFQ and Find the Right Partner |author=Holmes, T. |work=AllCloud Blog |accessdate=07 December 2022}}</ref>


* [http://cni.columbia.edu/shared-labs/ Columbia University's Columbia Nano Initiative Shared Labs Facilities]
Remember, an RFI is not meant to answer all of your questions. The RFI is meant as a means to help narrow down your search to a few quality candidates while learning more about each other.<ref name="HolmesItsAMatch" /> Once the pool of potential software vendors is narrowed down, and you then participate in their demonstrations, you then can broadly add more requirements to the original collection of critical requirements from the RFI to ensure those providers meet all or most of your needs. That said, be cognizant that there may be no vendor that can meet each and every need of your lab. Your lab will have to make important decisions about which requirements are non-negotiable and which are more flexible. The vendors you engage with may be able to provide realistic advice in this regard, based upon your lab's requirements and their past experience with labs. As such, those vendors with real-world experience meeting the needs of manufacturing laboratories may have a strong leg up on other vendors.
* [http://snl.mit.edu/ Massachusetts Institute of Technology's Space Nanotechnology Laboratory]
* [https://mntl.illinois.edu/ University of Illinois' Micro & Nanotechnology Lab]


====Functions====
Again, Appendix 1 of this guide includes a comprehensive specifications document called LIMSpec, from which you can draw the requirements that are most critical to be addressed in an RFI. If you have zero experience developing an RFI, you may want to first seek out various example RFIs on the internet, as well as some basic advice articles on the topic. Some websites may provide templates to examine for further details. Broadly speaking, if you're conducting a full RFI or RFP, you're going to lead with the standard components of an RFI or RFP, including:


''What are the most common functions?'' analytical, QA/QC, research/design, and teaching
* a table of contents;
* an honest introduction and overview of your organization, its goals and problems, and the services sought to solve them;
* details on how the RFI or RFP evaluation process will be conducted;
* basis for award (if an RFP);
* the calendar schedule (including times) for related events;
* how to submit the document and any related questions about it, including response format; and
* your organization's background, business requirements, and current technical environment.


''What materials, technologies, and/or aspects are being analyzed, researched, and quality controlled?'' nanoemulsions, nanomaterials, nanomedicines
Being honest about your organization, its informatics requirements, and its current technical environment upfront in the RFI or RFP will also ensure that the time spent on the process is optimized for all involved parties. Before submitting any RFI, your lab will want to conduct thorough internal research ensuring everyone understands what the current technology and processes are, and how you all want to shape that with the introduction or updating of laboratory informatics systems. (If your lab has limited to no experience with adding automation and informatics elements to a laboratory, you may want to read through laboratory informatics veteran Joe Liscouski's [[LII:The Application of Informatics to Scientific Work: Laboratory Informatics for Newbies|''The Application of Informatics to Scientific Work: Laboratory Informatics for Newbies'']] for further insight.) You'll also want to answer critical questions such as "who will be responsible for maintaining the solution and its security?" and "how will our processes and procedures change with the introduction or updating of informatics systems?". These and other questions make up your business considerations, which should also address the:


''What sciences are being applied in these labs?'' astrophysics, biology, biomedical engineering, chemistry, electrical engineering, microfabrication, molecular biology, molecular engineering, organic chemistry, physics, statistics
* acquisition and long-term maintenance budget;
* diversity of laboratory services offered now and into the future;
* level of in-house knowledge and experience with informatics systems and automation;
* level of in-house, executive buy-in of informatics adoption; and
* need for additional vendor pre-planning.


''What are some examples of test types and equipment?''
One other note: make it clear in any issued RFI that it's strictly a request for information and not a guarantee to issue a contract with any respondent.


'''Common test types include''':


Acute toxicity, Biocompatibility, Characterization, Chronic toxicity, Design review and evaluation, Ecotoxicology, Electrophoresis, Efficacy, Friction, Grain and particle size, Irritation, Nanoparticulate, Proficiency, Safety, Spectral, Subchronic toxicity, Surface topography
<!--{{LIMS Selection Guide for Manufacturing Quality Control/Taking the next step/Respond to or open dialogue with vendors}}//-->
===5.3 Respond to or open dialogue with vendors===
If you went the route of the RFI, you hopefully received more than a few well-crafted responses. Your RFI presumably included a small but critical set of requirements that needed to be addressed, and the vendors who responded dutifully addressed those critical requirements. Even if you didn't send out an RFI, you at least did your own research about some of the big players in the laboratory informatics space, and you may have even opened an initial dialogue with a few of them. If all has gone well, you're now at the point where you've narrowed down the pool of vendors but still have a basket of them to continue dialogue with. (If you're not comfortably at this point after an RFI or engagements with multiple vendors, you may need to either reconsider the effectiveness of your RFI or engagements or enlist help from a knowledgeable and experienced consultant to help steer you back on-course.)


'''Industry-related lab equipment may include''':  
As dialogue continues with vendors, you'll have several points to address:


atom probe, atomic force microscope, atomic force microscopy-Raman system, atomic layer deposition system, calorimeter, cryogenic probe station, dynamic light scattering equipment, electron backscattered diffraction system, ellipsometer, flow chemistry reactor, helium ion beam microscope, micro hardness tester, micropositioning system, nanoparticle characterization system, optical tweezers, particle size analyzer, plasma etching system, safety cabinet, scanning electron microscope, scanning near-field optical microscope, separation membrane, spectrometer, spectrophotometer, transmission electron microscope, viscometer, X-ray camera, X-ray diffractometer
1. What do I want their [[laboratory information management system]] (LIMS) to do for me?


''What else, if anything, is unique about the labs in the nanotech industry?''
2. How does their solution fit into our previously discussed budget?


The laboratory equipment of a nanotechnology lab stands out among other industry labs, in so much that it tends to be specialized and expensive, regardless of what sub-field of nanotechnology is being studied.<ref name="BoysenNano08">{{cite web |url=http://www.nanotech-now.com/columns/?article=182 |title=For Rent: One Nano Research Lab… |author=Boysen, E. |work=Nanotechnology Now |publisher=7th Wave, Inc |date=24 March 2008 |accessdate=29 June 2022}}</ref><ref name="DamaseOpen15">{{cite journal |title=Open source and DIY hardware for DNA nanotechnology labs |journal=Journal of Biological Methods |author=Damase, T.R.; Stephens, D.; Spencer, A.; Allen, P.B. |volume=2 |issue=3 |pages=e24 |year=2015 |doi=10.14440/jbm.2015.72 |pmid=26457320 |pmc=PMC4598940}}</ref> This extends to the laboratory space itself, where conditions must be specially maintained for optimal results; this includes electromagnetic shielding, reduced acoustic levels, reduced vibrations, and carefully maintained temperatures.<ref name="USNRLAbout">{{cite web |url=https://www.nrl.navy.mil/nanoscience/about/ |title=About the NSI |work=U.S. Naval Research Laboratory |publisher=Department of the Navy |accessdate=29 June 2022}}</ref>
Regarding question one, you've already laid some of the groundwork for that with the help of your handful of critical requirements (and the associated research that went into developing them). Outside of those critical requirements, a laboratory informatics solution should also provide clearly definable benefits to how you operate your manufacturing laboratory. These expected benefits should tie in with your overall business mission and goals. Using a LIMS as an example, here are a few of the benefits a well-developed LIMS can provide to practically any laboratory. Whenever you go through the discovery process with a vendor, you'll be asking how their system provides these and other benefits through its functionality. A quality LIMS can provide<ref name="McLelland98">{{cite web |url=http://www.rsc.org/pdf/andiv/tech.pdf |archiveurl=https://web.archive.org/web/20131004232754/http://www.rsc.org/pdf/andiv/tech.pdf |format=PDF |title=What is a LIMS - a laboratory toy, or a critical IT component? |author=McLelland, A. |publisher=Royal Society of Chemistry |page=1 |date=1998 |archivedate=04 October 2013 |accessdate=07 December 2022}}</ref><ref name="SciCompRisksBens">{{cite journal |title=Industry Insights: Examining the Risks, Benefits and Trade-offs of Today’s LIMS |journal=Scientific Computing |author=Joyce, J.R. |issue=January/February 2010 |pages=15–23 |year=2010}}</ref>:


====Informatics in the nanotechnology industry====
* increased accuracy: the minimization or elimination of transcription and other errors;
Yes, data analysis and management systems are also important in the burgeoning field of nanotechnology. Referred to at times as nanoinformatics, the application of informatics tools to nanotechnology happens in several ways:
* streamlined processes: ensuring each process step in a protocol/method is completed in the proper order, with all requirements met, updating sample statuses automatically;
* automation: integration with instruments, allowing for automatic uploading of samples and returning of results;
* regulatory and standards compliance: functionality that aids with compliance, including reporting results to state and local authorities;
* data security: role-based, configurable, secure access to data, processes, reporting, etc.;
* flexible reporting: reporting tools that allows for the design and generation of certificates of authority and other reports to lab- and regulation-based specs;
* instant data retrieval: query tools for finding data instantly according to any criteria (date range, test, product type, etc.); and
* configurability and cost-effectiveness: a user-configurable system (as opposed to hard-coded, requiring development for any modifications) that is flexible enough to adapt to rapid changes in test volume and type over time, without breaking the bank.


* Nanomaterials development: the use of artificial neural networks and other tools to formulate, analyze, and assess requirements specification for nanomaterials; develop conceptual designs; and finalize a detailed technical solution<ref name="OmelyanenkoTasks16">{{cite journal |title=Tasks and tools of nanoinformatics in nano materials application in space industry |journal=Proceeding from the International Conference on Nanomaterials: Application & Properties |author=Omelyanenko, V.A. |year=2016 |doi=10.1109/NAP.2016.7757227}}</ref>
As for the second question, budgeting is always a tricky topic, both internally and when discussing it with vendors. We already mentioned in the previous section that addressing the acquisition and long-term maintenance budget of your solution(s) must be addressed as part of your lab's business considerations. (And we already mentioned some cost considerations in 3.1.6; this discussion will add a few more points.) The fact that laboratory informatics systems like the LIMS come in all kinds of price ranges makes it difficult to judge if a given system, as priced, is appropriate for your lab and its budget. There are some basic cost realities associated with LIMS acquisition<ref name="CSolsHowMuch17">{{cite web |url=https://www.slideshare.net/CSolsInc/how-much-does-a-lims-cost-licensing-and-beyond-pittcon-2017-tech-talk |title=How Much Does a LIMS Cost? Licensing and Beyond |author=Rosenberg, H.J. |work=SlideShare |date=28 March 2017 |accessdate=07 December 2022}}</ref><ref name="CSolsSaving18">{{cite web |url=https://www.csolsinc.com/blog/saving-costs-with-lims/ |title=Saving Costs with LIMS |publisher=CSols, Inc |date=25 October 2018 |accessdate=07 December 2022}}</ref>, which will help you understand where the vendor price comes from, and how it figures into your lab's budget (though some of these concepts may also apply to other informatics systems).


* Nanosafety data management: the management and sharing of "information on the physicochemical characteristics of nanomaterials, toxicity, exposure, data and metadata"<ref name="ENFNanoinfo17">{{cite web |url=http://euronanoforum2017.eu/2017/05/16/nanoinformatics-a-roadmap-for-european-innovation/ |archiveurl=https://web.archive.org/web/20170811230016/http://euronanoforum2017.eu/2017/05/16/nanoinformatics-a-roadmap-for-european-innovation/ |title=Nanoinformatics: A roadmap for European innovation |work=EuroNanoForum2017 |date=16 May 2017 |archivedate=11 August 2017 |accessdate=29 June 2022}}</ref>
:1. Vendor pricing is generally based on how many will be using the system. This can be measured in concurrent users (how many will be using the system at any one time) or named users (the number of total users who will ever use the system, by name). Additionally, laboratory informatics vendors increasingly offer the option of a [[Cloud computing|cloud-hosted]] subscription, which of course has the advantage of not requiring your own IT department, and allowing labs to defray cost over time, with little or no actual license fee. Think about your usage strategy and choose the pricing format that makes the most sense for you.  


* Nanotechnology ontology development: the development of "a web ontology in the form of a semantically precise and computer-processable definition of entities and their relationships" that will further integrate disparate data standards, sources, formats, and models towards a higher-quality and more efficient nanotech development sector<ref name="ErkimbaevNanoinfo16">{{cite journal |title=Nanoinformatics: Problems, methods, and technologies |journal=Scientific and Technical Information Processing |author=Erkimbaev, A.O.; Zitserman, V.Y.; Kobzev, G.A.; Trakhtengerts, M.S. |volume=43 |issue=4 |pages=199–216 |year=2016 |doi=10.3103/S014768821604002X}}</ref><ref name=DukeAGlobal17">{{cite web |url=https://pratt.duke.edu/about/news/global-approach-nanoinformatics |title=A Global Approach to Nanoinformatics |work=Pratt School of Engineering |publisher=Duke University |date=03 March 2017 |accessdate=29 June 2022}}</ref>
:2. Most costs are related to the work involved with installing, configuring, and migrating data to the system. Try to choose a solution that has what you need out of the box, as much as possible. The more customized or unique options you ask for up-front, the more it tends to cost, as extra items are a function of the time it takes developers to add them.


====LIMSwiki resources====
:3. "User-configurable" beats "vendor-configurable" on cost-effectiveness. Some vendors offer a free or low-cost option, but don't be fooled. They are in business to make money, and they are counting on the fact that you'll need to pay them to make things work, add necessary functionality, and provide support and training. If you can find a vendor who offers a genuinely user-configurable system, and whose manuals and other support materials are clearly helpful and available so that you can adjust things the way you want, when you want, then that will go a long way toward budget efficiency and longevity.


* [[Nano-scaffold]]
:4. Additional interfaces and reporting requirements cost money. If necessary, consider phasing in any additional instrument and software interfaces over time, as revenue eases cash flow. You can go live with your system operations more quickly, entering results manually until you can afford to interface your instruments one-by-one. This goes for reports as well; a simple reporting module that meets regulatory requirements will do. You can make your reports and other exportable documents more attractive later.
* [[:Category:Nanotechnology LIMS|Nanotechnology LIMS]]
* [[Nanotopography]]


====Further reading====
Ideally, your budget has room for roughly $40- to $80,000 minimum (including setup, training, interfaces, etc.) for a quality, full-featured professional LIMS or LIS, with $300 to $900 per month (depending on number of users) for ongoing subscriptions. At around five concurrent users, the economics start to favor purchasing perpetual licenses rather than paying for a subscription. Purchased licenses will also entail ongoing annual or monthly costs as well (e.g., maintenance, support, warranty for updates etc.) Subscriptions (if available) are generally aimed at smaller labs. If you will be growing and scaling up, it may be a great way to get started, but make sure you have the option to switch to perpetual licenses later.


* {{cite book |url=https://books.google.com/books?id=SGtYBQAAQBAJ&printsec=frontcover |title=A Laboratory Course in Nanoscience and Nanotechnology |author=Poinern, G.E.J. |publisher=CRC Press |year=2014 |pages=260 |isbn=9781482231038}}
With much of this information in hand, you're likely ready to move on to finalizing the requirements specification and choosing a vendor, but not before you've sat through a few highly useful demonstrations.


<div align="center"><hr width="50%"></div>
====5.3.1 The value of demonstrations====
[[File:ForUM demo (2659615090).jpg|left|360px]]A demonstration of laboratory informatics solution is an integral part of making your final decisions. The demo offers a unique and valuable opportunity to see in-person how data and information is added, edited, deleted, tracked, and protected within the context of the application; you can ask about how a function works and see it right then and there. Equally, it is an excellent time to compare notes with the vendor, particularly in regard to the critical requirement that were addressed in your RFI (or through direct communication with the vendor). You can ask the vendor in real-time to answer questions about how a specific task is achieved, and the vendor can ask you about your lab's system and workflow requirements and how you best envision them being implemented in the system (e.g., does this interface seem intuitive?).


===Petrochemical and hydrocarbon===
A demonstration is typically performed online, which is useful for a couple of reasons, COVID-19 notwithstanding. First, it means you can schedule and reschedule at your convenience, with little in the way of logistics to arrange. Second, the demonstration session is likely to be recorded (verify this), so everyone is clear on what was promised and what wasn't, how processes were shown to work, etc. Additionally, you can later review parts you may have missed, forgotten, or not quite understood, and you can share it with others, who then also get a look at the proposed system in action.
[[File:TASNEE 001.jpg|left|400px]]
{{clear}}
A petrochemical and hydrocarbon laboratory is focused on analyzing the properties and constituents of various petrochemicals and their feedstock (including petroleum, natural gas, and coal) for the purposes of ensuring their safety, quality, development, and improvement. Secondarily, these labs may provide a platform for research and development (R&D) and teaching. Petrochemical and hydrocarbon labs are found in the private and academic sectors, and occasionally in government, providing many different services, including (but not limited to)<ref name="ChaudhuriFund16">{{cite book |url=https://books.google.com/books?id=mKQnDet5IUoC&printsec=frontcover |title=Fundamentals of Petroleum and Petrochemical Engineering |author=Chaudhuri, U.R. |publisher=CRC Press |year=2016 |pages=411 |isbn=9781439851616}}</ref>:


* analysis for purity
Be careful about falling for the temptation of presenting a full URS or other specification document to the vendor during the demonstration. You'll want to wait until after participating in several software demonstrations to consider presenting your full specification document to the vendor, and that's assuming that you've grown enamored with their solution. By waiting to finalize your lab's requirements specification until after the demos, a common error is avoided: too often labs think the first thing they must do is create a requirements list, then sit back and let the informatics vendors tell them how they meet it. Remember that even though most labs thoroughly understand their processes, they likely don't have as strong a grasp on the informatics portion of their processes and workflows. Participating in a demo before finalizing your list of specified requirements—or having only a minimal yet flexible requirements list during the demo—is a great way to later crosscheck the software features you have seen demonstrated to your lab's processes and any initial requirements specification you've made.<ref name="HammerHowTo19">{{cite web |url=https://www.striven.com/blog/erp-software-demo |title=How to Get the Most Value from an ERP Software Demo |author=Hammer, S. |work=The Takeoff |date=27 June 2019 |accessdate=07 December 2022}}</ref> After all, how can you effectively require specific manufacturing-related functions of your laboratory informatics software if you don't fully know what such an industry-specific system is capable of? After the demonstrations, you may end up adding several requirements to your final specifications document, which you later pass on to your potential vendors of choice for final confirmation.
* analysis for contaminates
* corrosion testing
* characterization testing
* environmental testing
* [[quality control]] testing


''But how do petrochemical and hydrocarbon laboratories intersect the average person's life on a daily basis?''


The U.S. Energy Information Administration (EIA) estimated that of the approximately 7.19 billion barrels of petroleum consumed in the U.S. in 2016, 48 percent of it went towards motor gasoline, 20 percent of it went to distillate fuel, and eight percent was used as jet fuel.<ref name="EIAWhatAre17">{{cite web |url=https://www.eia.gov/tools/faqs/faq.php?id=41&t=6 |title=What are petroleum products, and what is petroleum used for? |work=Frequently Asked Questions |publisher=U.S. Energy Information Administration |date=19 April 2022 |accessdate=29 June 2022}}</ref> The EIA also notes that while petroleum is used as a feedstock for the creation of plastic in the U.S., it's not the main feedstock for plastic, and regardless, the EIA is unable to determine what percentage of petroleum consumed in the U.S. went towards the creation of plastics<ref name="EIAHowMuch17">{{cite web |url=https://www.eia.gov/tools/faqs/faq.php?id=34&t=6 |title=How much oil is used to make plastic? |work=Frequently Asked Questions |publisher=U.S. Energy Information Administration |date=01 June 2021 |accessdate=29 June 2022}}</ref> (though simple math using the numbers previously provided proves that it must be 24 percent or less). Even so, these facts alone can't but cement the idea that the world as we know it today would not be as it is without petroleum and petrochemical laboratories and their laboratorians. One could argue that laboratories developing renewable source of energy and the equipment to harness it are more important from an environmental standpoint, but the point still stands: we currently depend heavily on petrochemicals as energy and to create thousands of products.<ref name="SpeightTheChem14">{{cite book |url=https://books.google.com/books?id=ZDPOBQAAQBAJ&pg=PA773 |title=The Chemistry and Technology of Petroleum |chapter=Chapter 27: Petrochemicals |author=Speight, J.G. |publisher=CRC Press |year=2014 |pages=773–795 |isbn=9781439873908}}</ref>
<!--{{LIMS Selection Guide for Manufacturing Quality Control/Taking the next step/Finalize the requirements specification and choose a vendor}}//-->
===5.4 Finalize the requirements specification and choose a vendor===
Now that the demonstrations have been conducted and more questions asked, you should be close to finalizing your requirement specifications with one ore more vendors. In fact, you may have taken LIMSpec, chosen a few critical requirements from it, added them to a few unique requirements of your own, and included them as part of an RFI or question and answer session with vendors. You then likely took those responses and added them to your wider overall specification (e.g., LIMSpec), along with your own notes and observations from interacting with the vendor. This may have been repeated for several vendors and their offerings.  


====Client types====
At this point, you're likely ready to either have those vendors complete the rest of the responses for their corresponding URS, or you may even be ready to narrow down your vendor selection. This all likely depends on what the initial fact finding revealed. How well did the vendors respond to your laboratory's unique set of needs? Were there critical areas that one vendor could address with their off-the-shelf solution but another vendor would have to address with custom coding? Did any of the vendors meet your budget expectations? Have you followed up on any references and customer experiences the vendors provided to you?


'''Private''' - These labs provide an array of analytical services as third-party testers and consultants, or they work as company-based or independent research and development laboratories developing new petrochemical-based products.
It may be that several vendors are appealing at this point, meaning it's time to have them respond to the rest of the URS. This makes not only for good due diligence, to better ensure most requirements can be met, but also a reviewable option for any "tie-breaker" you have between vendors. In reality, this tie-breaker scenario would rarely come up; more often, some other aspect of the software, company, or pricing will be a stronger limiter. However, you still want to get all those vendor responses, even if you've early on filtered your options down to one vendor.


Examples include:
Ultimately, your specification document may look similar to the LIMSpec, or it may have a slightly different format. Many prospective buyers will develop a requirement specification in Microsoft Excel, but that has a few minor disadvantages. Regardless of format, you'll want to give plenty of space for vendors to submit a response to each requirement. For your convenience, a Microsoft Word version of Appendix 1's LIMSpec for manufacturing labs is also included as part of this guide (see A8. LIMSpec in Microsoft Word format). That document is editable, giving end users and vendors the flexibility to remove information and enlarge columns.


* [https://www.huffmanlabs.com/?page_id=160 Huffman Hazen Laboratories]
Additionally, remember that often is the case that after the URS is completed and final questions asked, no single vendor can meet all your needs. Be ready for this possibility, whether it be a functionality requirement or a budget issue. Know ahead of time where your laboratory is willing to be flexible, and how much flex you have. After all of your lab's preparation, and with a little luck, you've found a vendor that fits the bill, even if a few minor compromises had to be made along the way.
* [https://www.sgs.com/en/services/petrochemical-testing SGS]
* [https://www.sumitomo-chem.co.jp/english/rd/laboratories/essentialchemicals/ Sumitomo Chemical]
 
 
'''Government''' - At least in the United States, government petrochemical labs are typically working to ensure consistent fuel quality, product safety, and fuel transportation methods. Secondarily they may act as environmental response centers, reacting to petroleum spills and natural spills or developing improved remediation methods.
 
Examples include:
 
* [https://wildlife.ca.gov/OSPR/Science/Petroleum-Chemistry-Lab California Petroleum Chemistry Lab]
* [https://ops.colorado.gov/Petroleum/PetroleumLaboratory Colorado Petroleum Laboratory]
* [https://agr.georgia.gov/state-fuel-oil-lab.aspx Georgia State Fuel Oil Laboratory]
 
 
'''Academic''' - Academic petrochemical labs are providing education to undergraduate and graduate students, as well as driving new research into petrochemical extraction and infrastructure.
 
Examples include:
 
* [https://www.delmar.edu/degrees/environmental-petrochemical-lab-technology/index.html Del Mar College's Environmental/Petrochemical Lab Technology Program]
* [https://engineering.tamu.edu/petroleum/research/index.html Texas A&M University's Harold Vance Department of Petroleum Engineering]
* [https://torp.ku.edu/ University of Kansas' Tertiary Oil Recovery Program]
 
====Functions====
 
''What are the most common functions?'' analytical, QA/QC, research/design, and teaching
 
''What materials, technologies, and/or aspects are being analyzed, researched, and quality controlled?'' aromatics, coal, feedstocks, hydrocarbons, intermediate chemicals, monomers, natural gas, petroleum, polymers, sediment, solvents, sulfur, trace metals, water, wear metals
 
''What sciences are being applied in these labs?'' chemistry, environmental science, geology, geophysics, mathematics, petroleum engineering, physics, thermodynamics
 
''What are some examples of test types and equipment?''
 
'''Common test types include''':
 
Acid and base number, Aniline point, API gravity, Basic sediment and water, Biodegradation, Boiling - freezing - melting point, Calorimetry, Carbon-hydrogen ratio, Cargo inspection and sampling, Cetane, Chemical and materials compatibility, Cloud point, Combustion, Compliance/Conformance, Conductivity, Congealing point, Conradson Carbon Residue, Contamination, Corrosion, Damage tolerance, Decomposition, Density, Dissolved gas, Doctor test, Emissions, Evaporation loss, Flash point, Fluid dynamics, Geochemistry, Geophysics, Heating value, Hydraulic, Hydrocarbon group type, Immersion, Impurity, Kauri-butanol value, Leak, Lightning, Lubricity, Macroetch, Mobility, Moisture, Molecular weight, Octane, Oxidation reduction potential, Oxidation stability, Passivation, Permeability, Peroxide value, pH, Plating and coating evaluations, Pour point, Pressure, Process safety, Proficiency, Quality control, Radioactivity, Radiochemical, Ramsbottom Carbon Residue, Refractive index, Salt content, Saponification value, Seismic, Smoke point, Stress corrosion cracking, Surface tension, Thermal, Vapor pressure, Velocity and flow, Viscosity, Weathering
 
'''Industry-related lab equipment may include''':
 
amperostat, balance, chromatographic, combustion analyzer, constant temperature bath, density meter, dissolved oxygen meter, evaporation loss analyzer, flashpoint tester, flocculator, fume hood, hot plate, hygrometer, iodine flask, metallic iron analyzer, muffle furnace, oil-in-water analyzer, oxidation stability analyzer, pH meter, pycnometer, refractometer, rheometer, shakers and stirrers, specific gravity flask, spectrometer, spectrophotometer, thermometer, thin film oven, titrator, turbidity meter, vapor pressure analyzer, viscometer, water bath
 
''What else, if anything, is unique about the labs in the petrochemical and hydrocarbon industry?''
 
Because of the environmental consequences of petrochemical and feedstock pollution of the environment, petrochemical labs share some of the same characteristics of environmental labs. Also like environmental labs, petrochemical labs have their fair share of field analyses, both on land and on the water.
 
====Informatics in the petrochemical and hydrocarbon industry====
Proper data analysis and management in the petrochemical and hydrocarbon lab is vital to the quality of the final consumer product and to the efficiency of the business itself. [[Laboratory informatics]] software like the [[laboratory information management system]] (LIMS) is an important tool towards meeting those goals. And the processes are different at each manufacturing and R&D stage, from improving operation efficiencies in drilling and recovery of the upstream phase, the process optimization of midstream hydrocarbon cracking and refining, and the process development and improvement of polymers and plastics downstream.<ref name="KtoriFuelling14">{{cite web |url=https://www.scientific-computing.com/feature/fuelling-growth-petrochemicals-sector |title=Fuelling growth in the petrochemicals sector |author=Ktori, S. |work=Scientific Computing World |publisher=Europa Science |date=07 November 2014 |accessdate=29 June 2022}}</ref> LIMS and other tools are capable of automatically capturing data from a continuous process flow that involves in-process testing using numerous instruments, processing and storing that data, and making it available for a variety of purposes, including quality testing.<ref name="WilkieLab13">{{cite web |url=https://www.scientific-computing.com/feature/laboratory-informatics-systems-are-fuelling-efficiency |title=Laboratory informatics systems are fuelling efficiency |author=Wilkie, T. |work=Scientific Computing World |publisher=Europa Science |date=01 April 2013 |accessdate=29 June 2022}}</ref> As the need for efficiency and improved quality grows, conferences such as the International Petroleum Data Integration, Information and Data Management Conference<ref name="PNECIntPetro">{{cite web |url=https://www.pnecconferences.com/ |title=Petroleum Network Education Conferences |publisher=PennWell Corporation |accessdate=29 June 2022}}</ref> and the Esri Energy Resources GIS Conference<ref name="ESRIPetro">{{cite web |url=https://www.esri.com/en-us/about/events/esri-energy-resources-gis-conference/ |title=Esri Energy Resources GIS Conference |publisher=Environmental Systems Research Institute, Inc |accessdate=29 June 2022}}</ref> provide further opportunities for the industry to share and innovate new ways for informatics systems to further benefit the industry.
 
====LIMSwiki resources====
 
* [[Geoinformatics]]
* [[:Category:Petrochemical LIMS|Petrochemical LIMS]]
 
====Further reading====
 
* {{cite book |url=https://books.google.com/books?id=mKQnDet5IUoC&printsec=frontcover |title=Fundamentals of Petroleum and Petrochemical Engineering |author=Chaundhuri, U.R. |publisher=CRC Press |year=2016 |pages=411 |isbn=9781439851616}}
 
<div align="center"><hr width="50%"></div>
 
===Pharmaceutical===
[[File:Generic Propecia.jpg|left|400px]]
{{clear}}
 
The pharmaceutical laboratory is complex, but at its core the laboratorians in them aim to better develop, analyze, improve, and quality control the drugs and medical devices that improve humans' and animals' quality of life. Due to the potential health risks of ingesting/implanting a poorly tested pharmaceutical/[[medical device]], these labs tend to be heavily regulated by governments. In fact, the governments themselves will often have their own labs to test for product quality and lab compliance. Universities provide not only education programs and graduate research opportunities but also pharmaceutical analysis and outreach programs. Pharmaceutical labs are found in the private, government, and academic sectors, providing many different services, including (but not limited to)<ref name="WuAssay10">{{cite book |url=https://books.google.com/books?id=qxKqC1aGLBIC&pg=PA347 |title=Assay Development: Fundamentals and Practices |chapter=13.6 HTS Operation Management |author=Wu, G. |publisher=John Wiley & Sons |year=2010 |pages=347–354 |isbn=9780470583111}}</ref><ref name="AvomeenPharmLab">{{cite web |url=https://www.element.com/life-sciences/pharmaceutical |title=Element in Pharmaceutical Testing |publisher=Element Materials Technology |accessdate=29 June 2022}}</ref><ref name="HansenIntro12">{{cite book |url=https://books.google.com/books?id=S7S6a4OYTasC&printsec=frontcover |title=Introduction to Pharmaceutical Chemical Analysis |author=Hansen, S.; Pedersen-Bjergaard, S.; Rasmussen, K. |publisher=John Wiley & Sons |year=2012 |pages=624 |isbn=9781119954330}}</ref>:
 
* hit picking/screening of potential therapeutics
* method development and validation
* stability and photostability testing
* shelf life testing
* bioequivalence testing
* dissolution testing
* impurities testing
* counterfeit testing
* formulation optimization
* quality control
 
''But how do pharmaceutical laboratories intersect the average person's life on a daily basis?''
 
In a 2000 journal article published in ''Journal of Automated Methods & Management in Chemistry'', author Juanita M. Hawkins of Jansen Pharmaceutica noted the following: "Understanding the contributions that the laboratory can make in product/process development, process improvement, market surveillance and general business is key to the pharmaceutical business today. Poor laboratory practice yields compliance issues, increased cost, increased cycle time and delayed product introductions."<ref name="HawkinsTheImport00">{{cite journal |title=The Importance of the Laboratory to the Pharmaceutical Business |journal=Journal of Automated Methods & management in Chemistry |author=Hawkins, J.M. |volume=22 |issue=2 |pages=47–52 |year=2000 |doi=10.1155/S1463924600000067 |pmid=18924858 |pmc=PMC2548258}}</ref> While a very business-centered statement, reading between the lines—and further into the journal article—reveals why properly run pharmaceutical labs are important to the average person today: "customers expect the product to be safe and efficacious" and "that it meets all specifications."<ref name="HawkinsTheImport00" /> All but those participating in a primitive society will at one point (if not frequently) have the need to be treated with a pharmaceutical drug or device. Without the associated laboratories and quality control (QC) procedures in place, the pharmaceuticals would be of poor quality (if they existed at all) and endanger many lives. Even if you take something as simple as an aspirin, remember that a lab developed it, improved it, and/or QCed it for your benefit.
 
====Client types====
 
'''Private''' - These labs are either part of a pharmaceutical company's portfolio or are third-party contract labs that provide extensive analysis and consulting services.
 
Examples include:
 
* [https://www.element.com/life-sciences/pharmaceutical Element Materials Technology]
* [http://www.medipharmlab.com/services/pharmaceutical-analysis.php Medipharm Laboratories]
* [https://www.pacelabs.com/life-sciences/ Pace Analytical Services]
 
'''Government''' - Government pharmaceutical labs typically act as either research centers or in an official regulatory capacity to ensure product quality and lab compliance.
 
Examples include:
 
* [https://frederick.cancer.gov/research/biopharmaceutical-development-program Frederick National Laboratory for Cancer Research's Biopharmaceutical Development Program]
* [https://www.govtlab.gov.hk/en/about_us/aasd/pcs.html Hong Kong's Pharmaceutical Chemistry Section of the Analytical & Advisory Services Division]
* [https://www.fda.gov/science-research/field-science-and-laboratories/detroit-laboratory-detl U.S. Food and Drug Administration's Detroit Laboratory]
 
'''Academic''' - The pharmaceutical engineering labs in the academic sector provide not only education programs for students and graduate research opportunities but also pharmaceutical analysis and outreach programs.
 
Examples include:
 
* [https://pharmlabs.unc.edu/ University of North Carolina - Chapel Hill's Pharmaceutics and Pharmaceutical Compounding Laboratory]
* [https://padproject.nd.edu/get-involved/distributed-pharmaceutical-analysis-lab/ University of Notre Dame's Distributed Pharmaceutical Analysis Lab]
* [https://web.uri.edu/pharmacy/research/#cl-tabs-1-tab-section-5 University of Rhode Island, College of Pharmacy's various labs]
 
====Functions====
 
''What are the most common functions?'' analytical, QA/QC, research/design, and teaching
 
''What materials, technologies, and/or aspects are being analyzed, researched, and quality controlled?'' biological agents and samples, contaminates, drug substances, elemental metals, microbials, proteins, raw materials, solvents
 
''What sciences are being applied in these labs?'' biochemistry, biology, chemistry, genetics, molecular biology, neuroscience, pathology, pharmacology, physiology, posology, toxicology
 
''What are some examples of test types and equipment?''
 
'''Common test types include''':
 
Absorption, Active ingredient, Acute contact, Acute oral, Acute toxicity, Alcohol level, Allergy, Altitude, Amino acid analysis, Angle of repose, Antimicrobial, Bioavailability, Bioburden, Biocompatibility, Bioequivalence, Biosafety, Boiling - freezing - melting point, C- and N-terminal, Carcinogenicity, Characterization, Chronic toxicity, Circular dichroism, Cleanliness, Clinical diagnostic, Colorimetric, Compendial, Compliance/Conformance, Composition, Congealing point, Contamination, Cytotoxicity, De novo protein, Detection, Developmental and reproductive toxicology, Disintegration, Dissolution, Disulfide bridge, Efficacy, Electrophoresis, Endotoxin, Expiration dating, Extractables and leachables, Flavor, Formulation, Fragrance, Friability, Functional observational battery, Genotoxicity, Human factors, Identification, Impurity, Ingredient, Ingress, Inhalation, Irritation, Iterative, Locomotor activity, Lot release, Microfluidics, Minimum bactericidal concentration, Minimum inhibitory concentration, Moisture, Molecular weight, Mutagenicity, Nanoparticulate, Organic carbon, Osmolality, Osmolarity, Oxidation reduction potential, Oxidation stability, Pathogen, Peptide mapping, Permeability, pH, Pharmacokinetic, Photostability, Phototoxicity, Polarimetry, Post-translational modification, Preservative challenge, Process safety, Proficiency, Protein analysis, Protein characterization, Purity, Pyrogenicity, Quality control, Radioactivity, Radiochemical, Safety, Saponification value, Sensitization, Solubility, Specific rotation, Stability, Sterility, Subchronic toxicity, Surface tension, Thermal, Total viable count, Toxicokinetic, Ultraviolet, Usability, Validation, Verification, Virucidal efficacy, Water activity
 
'''Industry-related lab equipment may include''':
 
animal monitoring equipment, balance, biological safety cabinet, blood and hematology analyzers, calorimeter, cell counter, cell disruptor, cell harvesting system, centrifuge, chemical synthesizer, chromatographic, cryocooler, dissolution equipment, dissolved oxygen meter, DNA shearing sonicator, drying and heating chamber, electrophoresis equipment, flow cytometer, flow injection analyzer, freeze dryer, freezer, fume hood, glove box, hit-picking system, incubator, inhalation chamber, interferometer, laminar flow cabinet, liquid handling equipment, metallic iron analyzer, microplate equipment, particle counter, PCR equipment, pH meter, powder analyzer, pumps and sprayers, refractometer, rheometer, solid phase extraction equipment, spectrometer, spectrophotometer, steam sterilizer, sonicator, turbidity meter, UV chamber, vacuum evaporator, viscometer, water purification system
 
''What else, if anything, is unique about the labs in the pharmaceutical industry?''
 
QC is important to any laboratory; however, in the pharmaceutical industry, many countries like the U.S. place extra emphasis on pharmaceutical QC labs. "The pharmaceutical quality control laboratory serves one of the most important functions in pharmaceutical production and control ... This includes pharmaceutical laboratories used for in-process and finished product testing," says the U.S. Food and Drug Administration.<ref name="USFDAPharmGuide14">{{cite web |url=https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/inspection-guides/pharmaceutical-quality-control-labs-793 |title=Guide to Inspections of Pharmaceutical Quality Control Laboratories |publisher=U.S. Food and Drug Administration |date=13 November 2014 |accessdate=30 June 2022}}</ref> Even the World Health Organization puts focus on their importance, pointing out<ref name="WHOGoodPract10">{{cite web |url=https://www.who.int/publications/m/item/who-good-practices-for-pharmaceutical-quality-control-laboratories---trs-957---annex-1 |title=WHO Good Practices for Pharmaceutical Quality Control Laboratories |publisher=World Health Organization |date=2010 |pages=49 |accessdate=30 June 2022}}</ref>:
 
<blockquote>The government, normally through the national medicines regulatory authority (NMRA), may establish and maintain a pharmaceutical quality control laboratory to carry out the required tests and assays to verify that APIs, excipients and pharmaceutical products meet the prescribed specifications. Large countries may require several pharmaceutical quality control laboratories which conform to national legislation, and appropriate arrangements should, therefore, be in place to monitor their compliance with a quality management system.</blockquote>
 
As Maura May notes for ''Pharmaceutical Manufacturing'', the importance of these labs not only lies in protecting the public and company; they're a product of a competitive environment, where spending, cleanliness, and lead times are vital.<ref name="MayLeaning14">{{cite web |url=https://www.pharmamanufacturing.com/articles/2014/leaning-the-quality-control-laboratory/ |title=Leaning the Quality Control Laboratory |author=May, M. |work=Pharmaceutical Manufacturing |publisher=Putman Media |date=16 September 2014 |accessdate=30 June 2022}}</ref>
 
====Informatics in the pharmaceutical industry====
In the pharmaceutical industry, we can look at how informatics is applied in two key ways:
 
* the drug discovery and R&D phase, found within the pharmaceutical company continuum (sometimes referred to as drug discovery informatics, and pharmacoinformatics)
* the dispersal and use phase, found within the healthcare continuum (sometimes referred to as drug informatics, pharmacy informatics, and pharmacoinformatics)
 
In the first case, drug discovery and development is supported using data analysis and management tools that allow laboratory researchers to model molecules, search and visualize research data, build databases, and track efficacy.<ref name="KumarBio17">{{cite journal |title=Biopharmaceutical Informatics: Supporting biologic drug development via molecular modelling and informatics |journal=Journal of Pharmacy and Pharmacology |author=Kumar, S.; Plotnikov, N.V.; Rouse, J.C.; Singh, S.K. |year=2017 |doi=10.1111/jphp.12700 |pmid=28155992}}</ref> In the other, patients and doctors are provided with more relevant and timely drug information, drug utilization reviews, medication-related policies and procedures, and dispensing practices.<ref name="WolduDrug14">{{cite journal |title=Drug Informatics from Evolution to the Present Outlook |journal=Journal of Health and Medical Informatics |author=Woldu, M.A.; Lenjissa, J.L. |volume=5 |pages=161 |year=2014 |doi=10.4172/2157-7420.1000161}}</ref> The development and propagation of informatics tools to perform these and other important tasks in and out of the lab are furthered by journals such as ''ASSAY and Drug Development Technologies''<ref name="ASSAY">{{cite web |url=https://home.liebertpub.com/publications/assay-and-drug-development-technologies/118/overview |title=ASSAY and Drug Development Technologies |publisher=Mary Ann Liebert, Inc |accessdate=30 June 2022}}</ref> and special interest groups like the Association of Faculties of Pharmacy of Canada (AFPC)'s Pharmacy Informatics SIG.<ref name="AFPCSIG">{{cite web |url=https://www.afpc.info/content/pharmacy-informatics-sig |title=Pharmacy Informatics SIG |publisher=Association of Faculties of Pharmacy of Canada |accessdate=30 June 2022}}</ref>
 
====LIMSwiki resources====
 
* [[:Category:Contract services LIMS|Contract services LIMS]]
* [[:Category:Pharmaceutical LIMS|Pharmaceutical LIMS]]
* [[Pharmacoinformatics]]
* [[Pharmacology]]
* [[Pharmacy automation]]
 
====Further reading====
 
* {{cite book |url=https://books.google.com/books?id=ZmdnEAAAQBAJ&printsec=frontcover |title=Analytical Testing for the Pharmaceutical GMP Laboratory |author=Huynh-Ba, K. |publisher=John Wiley & Sons |year=2022 |pages=416 |isbn=9781119680437}}
 
<div align="center"><hr width="50%"></div>
 
===Power and utility===
[[File:Iwachishi-51-r1.JPG|left|400px]]
{{clear}}
The labs in the power and utility industry cover at least two broad categories: power generation and transmission (electrical engineering and its sub-branches) and water treatment and distribution (water engineering and management, including water purification chemistry). Natural gas transmission and distribution (natural gas engineering) is a third type, though more often than not these labs appear in the upstream and midstream distribution chain (i.e., within the petrochemical industry). In several parts of the world, the development and maintenance of local, regional, and even national broadband internet infrastructure is increasingly also considered a responsibility of the public utility system. These labs are found in the private and academic sectors, and occasionally in government, providing many different services, including (but not limited to)<ref name="BartiromoElect16">{{cite book |url=https://books.google.com/books?id=tt37CwAAQBAJ&printsec=frontcover |title=Electrical Measurements in the Laboratory Practice |author=Bartiromo, R.; De Vincenzi, M. |publisher=Springer |year=2016 |pages=286 |isbn=9783319311029}}</ref><ref name="PizziWater05">{{cite book |url=https://books.google.com/books?id=8nDIGStFlyMC&pg=PA153 |chapter=Chapter 12: Testing and Laboratory Procedures |title=Water Treatment Operator Handbook |author=Pizzi, N.G. |publisher=American Water Works Association |year=2005 |edition=2nd |pages=153–164 |isbn=9781583213711}}</ref>:
 
* hardware design, verification, and optimization
* real-time digital power system (RTDS) simulation
* magnetic material characterization
* short circuit analysis
* high-voltage analysis
* forensic and incident analysis
* environmental simulation testing
* certification testing
* water quality monitoring and analysis
 
''But how do power and utility laboratories intersect the average person's life on a daily basis?''
 
If you live in a location where access to power and clean water is consistent, to the point of being easy to take for granted, then your life is positively affected by a power and utility laboratory. Sometimes things go wrong, though, as they have done in the city of Flint, Michigan, where government leadership failures and cost-cutting measures led to a problematic water treatment plant and water source to continue to be used despite warnings the water was dangerous.<ref name="AugensteinFlint17">{{cite web |url=https://www.laboratoryequipment.com/news/2017/06/flint-water-crisis-five-michigan-officials-charged-involuntary-manslaughter |archiveurl=https://web.archive.org/web/20170615235854/https://www.laboratoryequipment.com/news/2017/06/flint-water-crisis-five-michigan-officials-charged-involuntary-manslaughter |title=Flint Water Crisis: Five Michigan Officials Charged with Involuntary Manslaughter |author=Augenstein, S. |work=Laboratory Equipment |publisher=Advantage Business Media |date=14 June 2017 |archivedate=15 June 2017 |accessdate=30 June 2022}}</ref> The Flint crisis is a reminder that when processes break down in a public utilities lab—whether caused internally or from higher up in government—people get hurt or even die. Power, water, natural gas, and even broadband internet: most enjoy and expect these basic services on a daily basis, and sound laboratory analysis and research ensures this holds true.
 
====Client types====
 
'''Private''' - These company labs provide a wide array of testing services to third-party clients, conduct research, and even provide certification testing.
 
Examples include:
 
* [https://powertechlabs.com/high-power/ Powertech Labs]
* [https://www.sandc.com/en/products--services/services/laboratory-services/ S&C Electric Company]
* [https://www.sintef.no/en/all-laboratories/sintef-energy-lab/ SINTEF]
 
'''Government''' - These are federal, state, or local laboratories responsible for testing and maintaining the safety of water supplies, developing and improving electrical infrastructure, or researching new technologies for public utilities. Occasionally local municipalities will post requests for proposal (RFPs) to contract out regulation-mandated water quality testing rather than invest in the infrastructure to do it their self.
 
Examples include:
 
* [https://www.pompanobeachfl.gov/residents/utilities/water City of Pompano Beach, Florida's Utilities Laboratory]
* [https://www.pnnl.gov/electricity-infrastructure-buildings-division Pacific Northwest National Laboratory's Electricity Infrastructure Group]
* [https://www.powerlab.dk/about_powerlabdk PowerLabDK]
 
'''Academic''' - Academic power and utility labs are largely instructional, with graduate level research helping to expand the field.
 
Examples include:
 
* [https://sites.psu.edu/microgridtestbedpsh/ Penn State Harrisburg University's PPL Electric Utilities Lab]
* [https://www.oit.edu/academics/labs/power-lab Oregon Tech Wilsonville's Power Lab]
* [https://engineering.ucdenver.edu/departments/electrical-engineering/ugrad-labs University of Colorado Denver's Power Laboratory]
 
====Functions====
 
''What are the most common functions?'' analytical, QA/QC, research/design, and teaching
 
''What materials, technologies, and/or aspects are being analyzed, researched, and quality controlled?'' actuators, conductors, electrical converters, energy storage, high-voltage direct-current links, hydroelectric generators, networking equipment, superconductors, transformers, transmission lines, wastewater, water
 
''What sciences are being applied in these labs?'' chemistry, control engineering, electrical engineering, electrochemistry, electromagnetism, electronics, forensic science, nanotechnology, physics, power engineering, signal processing
 
''What are some examples of test types and equipment?''
 
'''Common test types include''':
 
Accelerated stress testing, Accelerated weathering, Acoustical, Aging, Anion, Antimicrobial, Artificial pollution, Bioburden, Chemical and biochemical oxygen demand, Cleanliness, Climatics, Comparative Tracking Index, Compliance/Conformance, Compression, Corrosion, Current and current switching, Damage tolerance, Decomposition, Degradation, Dielectric withstand, Efficiency, Electromagnetic compatibility, Electromagnetic interference, Electrostatic discharge, Emissions, Endurance, Environmental stress-cracking resistance, Failure, Fatigue, Fault simulation, Flash point, Geothermal, Hydraulic, Immersion, Impact, Incident analysis, Induction motor fault, Internal arc, Lightning, Macroetch, Mechanical, Mechanical durability, Minimum bactericidal concentration, Minimum inhibitory concentration, Out-of-phase making and breaking, Partial discharge, pH, Plating and coating evaluations, Power quality, Pressure, Proficiency, Radioactivity, Radio interference voltage, Reliability, Resistance - capacitance - inductance, Short-circuit withstand, Short-line fault, Solar, Stress corrosion cracking, Temperature-rise, Tensile, Thermal, Torque, Turbidity, Velocity and flow, Voltage, Weathering
 
'''Industry-related lab equipment may include''':
 
''Electrical engineering'': arbitrary waveform generator, circuit simulator, configurable test grids, current and voltage probes, inverter systems, LCR meter, machine drive and controller systems, magnetometer, microcontroller systems, multimeter, oscilloscope, potentiometer, primary metering unit, real-time digital power system simulator, Rogowski coil, semiconductor curve tracer, spectrum analyzer, tachometer, temperature camera
 
''Water engineering'': adenosine triphosphate meter, biocide test kit, borescope, burette, centrifuge, chlorination test kit, colorimeter, conductivity meter, dissolved oxygen meter, Erlenmeyer flask, hydrometer, incubator, ''Legionella'' test kit, oxidation-reduction potential meter, pH meter, purge and trap equipment, reagents, salinity meter, settling cone, spectrophotometer, thermometer, total dissolved solids meter, turbidity meter
 
''Natural gas engineering'': See Petrochemical section.
 
''What else, if anything, is unique about the labs in the power and utility industry?''
 
Looking at the lab equipment list above, it's relatively easy to tell that those labs focusing on electrical engineering are by and far dry labs, whereas water engineering labs are (no pun intended) of the more typical wet type. A reliable power supply and clean drinking water are easy to take for granted in first-world countries, but both are backed by laboratorians working in very differently equipped labs.
 
====Informatics in the power and utility industry====
The power and utility industry, including its laboratories, are using informatics in a variety of different ways:
 
* Environmental informatics plays a role in power and utility labs, where researchers will use informatics tools to improve the integration and analysis of environmental data (such as from emissions tracking) and even make it available in a collaborative way for further regional or global analysis.<ref name="FalkeCoal08">{{cite web |url=http://www.mageep.wustl.edu/SYMPOSIA/2008/Presentations/Monday/Monday%20PM/1.00_Coal_Falke_Li.pdf |archiveurl=https://web.archive.org/web/20100530091824/http://www.mageep.wustl.edu/SYMPOSIA/2008/Presentations/Monday/Monday%20PM/1.00_Coal_Falke_Li.pdf |format=PDF |title=Coal Utility Informatics & Advanced Energy |author=Falke, S.; Fialkowski, E.; Li, Y.; Biswas, P. |publisher=Washington University in St. Louis |date=08 December 2008 |archivedate=30 May 2010 |accessdate=30 June 2022}}</ref>
 
* Geographic information systems and related imagery tools can also positively contribute to utility companies looking to better build and maintain energy transmission and other utility corridors, limiting vegetation management hours and providing more accurate placements.<ref name="IIIIntegrated16">{{cite web |url=https://www.integrated-informatics.com/post/product-launch-new-lidar-toolkit-announced-for-electric-utility-companies |title=Product Launch: New LiDAR Toolkit Announced for Electric Utility Companies |publisher=Integrated Informatics, Inc |date=01 March 2016 |accessdate=30 June 2022}}</ref>
 
* More future looking, consider "power grid informatics," defined by researcher Klara Nahrstedt of the University of Illinois at Urbana-Champaign as the study of "the structure, algorithms, behavior, and interactions of power grid physical systems and artificial cyber systems (cyberphysical systems) which store, process, access and communicate information."<ref name="NahrstedtElectric15">{{cite web |url=https://tcipg.org/sites/default/files/slides/2015_01-09_nahrstedt.pdf |format=PDF |title=Electric Vehicles and Their Impact on Trustworthy Power Grid Informatics |author=Nahrstedt, K. |publisher=Trustworthy Cyber Infrastructure for the Power Grid |date=09 January 2015 |accessdate=30 June 2022}}</ref> In particular, Nahrstedt looked at the future of electric vehicles—and one today could also extend it to driverless vehicles—and the "cyber-physical components" and data management considerations that come with a regional or even national infrastructure to support them.
 
* Local utilities are using real-time water quality and supply data to improve how they manage water and wastewater treatment.<ref name="CORDIS_DIAMOND16">{{cite web |url=https://cordis.europa.eu/article/id/152075-data-management-for-wastewater-treatment |title=Advanced data management and informatics for the optimum operation and control of wastewater treatment plants |work=Community Research and Development Information Service |publisher=EU Publications Office |date=17 March 2016 |accessdate=30 June 2022}}</ref>
 
====LIMSwiki resources====
 
* [[Hydroinformatics]]
* [[:Category:Power and utility LIMS|Power and utility LIMS]]
 
====Further reading====
 
* {{cite book |url=https://books.google.com/books?id=NlXOBQAAQBAJ&printsec=frontcover |title=Principles of Power Engineering Analysis |editor=Degeneff, R.C.; Hesse, M.H. |publisher=CRC Press |year=2011 |pages=452 |isbn=9781466515345}}
* {{cite book |url=https://books.google.com/books?id=V2LhtAEACAAJ |title=Standard Methods for the Examination of Water and Wastewater |editor=Baird, R.B.; Eaton, A.D.; Rice, E.W.; |edition=23rd |publisher=American Public Health Association |year=2017 |pages=1796 |isbn=9780875532875}}
 
<div align="center"><hr width="50%"></div>
 
===Veterinary===
[[File:Iranian cat in clinic.jpg|left|400px]]
{{clear}}
[[Veterinary medicine|Veterinary]] laboratories are to animals as clinical reference/diagnostic labs are to humans. These labs are designed with many of the same instruments found in a human diagnostic lab, with slight variations, and they conduct both clinical (serving the patient) and public health (serving the population) activities. Veterinary labs are found in the private, government, and academic sectors and provide many different services, including (but not limited to)<ref name="UCDVGLForensics">{{cite web |url=https://vgl.ucdavis.edu/forensics |title=The Veterinary Genetics Laboratory Forensic Section |publisher=University of California - Davis |accessdate=30 June 2022}}</ref><ref name="AVDLS">{{cite web |url=https://agi.alabama.gov/animalindustries/avdl/ |title=Alabama Veterinary Diagnostic Laboratory System |publisher=Alabama Department of Agriculture & Industries |accessdate=30 June 2022}}</ref><ref name="SiroisLab14">{{cite book |url=https://books.google.com/books?id=LW3XBQAAQBAJ&printsec=frontcover |title=Laboratory Procedures for Veterinary Technicians |author=Sirois, M. |publisher=Elsevier Health Sciences |year=2014 |edition=6th |pages=448 |isbn=9780323243575}}</ref>:
 
* diagnostic consultation
* toxicology
* DNA profiling and testing
* disease surveillance
* educational outreach
 
''But how do veterinary laboratories intersect the average person's life on a daily basis?''
 
The most obvious way veterinary labs impact our lives is via the animals we care for. From hamster to elephant, a veterinary laboratory is responsible for diagnosing disease in animals, aiding veterinarians in the treatment process. They also work behind the scenes, investigating cases of food-borne illness and disease outbreaks in animal populations, allowing quicker action against at-fault food manufacturers and potent disease vectors. Without these laboratories, feed, rescue, and companion animals of all types would face worse outcomes, and our edible meat sources would more often be contaminated, putting human health at risk as well.
 
====Client types====
 
'''Private''' - These labs provide third-party analysis and consultation services for animal owners and other veterinary labs.
 
Examples include:
 
* [https://www.antechdiagnostics.com/ Antech Diagnostics, Inc.]
* [https://www.huntersville.carolinavet.com/site/diagnostics Carolina Veterinary Specialists Huntersville]
* [https://www.natvetlab.com/ National Veterinary Laboratory, Inc.]
 
'''Government''' - As previously mentioned, many universities lump veterinary science programs with agriculture programs. You see some of this carry over to the government-run laboratories conducting animal health and disease diagnostic activities, typically though the government's agriculture department. Despite animal science as a scientific discipline arguably being more closely aligned with agriculture science than veterinary science<ref name="FlandersExploring11">{{cite book |url=https://books.google.com/books?id=WT1Ws2o3keYC&pg=PA38 |title=Exploring Animal Science |author=Flanders, F. |publisher=Cengage Learning |pages=38–39 |year=2011 |isbn=9781435439528}}</ref>, those government animal health labs are typically overseen and operated by veterinarians (see examples).
 
Examples include:
 
* [https://agi.alabama.gov/animalindustries/avdl/ Alabama Veterinary Diagnostic Laboratory System]
* [https://agriculture.mo.gov/animals/health/diagnosticlabs.php Missouri State Animal Health Diagnostic Laboratories]
* [https://agri.ohio.gov/programs/animal-disease-diagnostic-lab/ Ohio Animal Disease Diagnostic Laboratory]
 
'''Academic''' - At least in the United States, academic veterinary laboratories typically act as both teaching labs for students and as diagnostic or disease tracking facilities for paying clients and the public. Those providing third-party services will also be accredited by one or more associations such as the American Association of Veterinary Laboratory Diagnosticians.
 
Examples include:
 
* [https://vgl.ucdavis.edu/forensics University of California - Davis' Veterinary Genetics Laboratory Forensic Unit]
* [https://vetmed.illinois.edu/diagnostic-laboratory/ University of Illinois at Urbana-Champaign's Veterinary Diagnostic Laboratory]
* [https://vmdl.missouri.edu/ University of Missouri's Veterinary Medical Diagnostic Laboratory]
 
====Functions====
 
''What are the most common functions?'' analytical, QA/QC, research/design, and teaching
 
''What materials, technologies, and/or aspects are being analyzed, researched, and quality controlled?'' avians, biological specimens, cadavers, canines, DNA, exotic animals, equines, felines
 
''What sciences are being applied in these labs?'' clinical chemistry, clinical microbiology, cytopathology, genetics, hematology, histopathology, immunohematology, immunology, parasitology, pathophysiology, reproductive biology, surgical pathology, toxicology, virology
 
''What are some examples of test types and equipment?''
 
'''Common test types include''':
 
Acute contact, Acute oral, Acute toxicity, Allergy, Amino acid analysis, Antimicrobial, Bioaccumulation, Bioburden, Blood culture, Blood gases, Blood typing, Biophysical profile, Calorimetry, Characterization, Chronic toxicity, Colorimetric, Complete blood count, Compliance/Conformance, Cytopathology, Detection, Electrolyte and mineral panel, Genetic, Genotype, Hematocrit, Hemoglobin, Immunoassay, Immunofluorescence, Immunohistochemistry, Infectious disease, Kidney function, Lipid profile, Liver function, Metabolic panel, Minimum bactericidal concentration, Minimum inhibitory concentration, Neurotoxicity, Nutritional, Osmolality, Osmolarity, Parasitic, pH, Proficiency, Protein analysis, Protein characterization, Red blood cell count, Sensitization, Specific gravity, Subchronic toxicity, Thyroid function, Urine culture, Wildlife toxicology
 
'''Industry-related lab equipment may include''':
 
artificial insemination equipment, autoclave, balance, biohazard container, biosafety cabinet, centrifuge, chromatographic, clinical chemistry analyzer, colorimeter, desiccator, dissolved oxygen meter, dry bath, fume hood, homogenizer, hotplate, incubator, magnetic stirrer, microcentrifuge tube, microplate reader, microscope, multi-well plate, orbital shaker, PCR machine, personal protective equipment, pH meter, Petri dish, pipettor, powered air purifying respirators, refractometer, spectrophotometer, syringes, test tube and rack, thermometer, urinalysis device, veterinary table, water bath
 
''What else, if anything, is unique about the labs in the veterinary industry?''
 
While taking a pet to the veterinarian and having a biological sample analyzed is expected and ordinary, many people tend not to also be aware of the public health role many government and academic veterinary laboratories play. Described as veterinary public health (VPH) by the World Health Organization, the veterinarian makes "contributions to the physical, mental and social well-being of humans through an understanding and application of veterinary science".<ref name="WHO_VPH">{{cite web |url=http://www.who.int/zoonoses/vph/en/ |archiveurl=https://web.archive.org/web/20170621200511/http://www.who.int/zoonoses/vph/en/ |title=Veterinary public health (VPH) |work=Zoonoses |publisher=World Health Organization |archivedate=21 June 2017 |accessdate=30 June 2022}}</ref> Noah and Ostrowski break this concept down into six core domains in the ''Merck Veterinary Manual''<ref name="NoahRole">{{cite web |url=https://www.merckvetmanual.com/public-health/public-health-primer/role-of-the-veterinarian-in-public-health-one-health |title=Role of the Veterinarian in Public Health/One Health |work=Merck Veterinary Manual |author=Noah, D.L.; Ostrowski, S.R. |publisher=Merck & Co., Inc |accessdate=30 June 2022}}</ref>:
 
* Diagnosis, surveillance, epidemiology, control, prevention, and elimination of zoonotic diseases
* Laboratory animal facility and diagnostic laboratory health aspect management
* Biomedical research
* Health education and outreach
* Production and control of biologic products and medical devices
* Governmental and legislative activity
 
====Informatics in the veterinary industry====
The idea of using computers and software in veterinary laboratories isn't a new one; the American Veterinary Computer Society (today the Association for Veterinary Informatics [AVI]) was founded in the early 1980s to address such an idea.<ref name="AboutAVI">{{cite web |url=https://avinformatics.org/about-avi |title=About AVI |publisher=Association for Veterinary Informatics |accessdate=30 June 2022}}</ref> However, the application of informatics in the veterinary world arguably hasn't seen the same level of adoption as in clinical medicine. Associations like the AVI are helping to promote the expansion of veterinary informatics research and implementation in veterinary laboratories and offices, and universities such as Indiana University are offering specialized animal informatics programs that "will help students use technology to better understand animal behavior and develop tools to improve the health, well-being, and quality of life for animals."<ref name="VMRCVMAbout">{{cite web |url=https://informatics.indiana.edu/programs/ms-informatics/animal-informatics.html |title=Animal Informatics |publisher=Indian University Luddy School of Informatics, Computing, and Engineering |accessdate=30 June 2022}}</ref> Finally, entities such as Fetch dvm360 provide continuing education conferences to veterinarians on many veterinary informatics topics, including improving compliance, therapeutics, and clinical practice management.<ref name="CVCTalbot">{{cite web |urlhttps://www.fetchdvm360.com/ |title=Fetch dvm360 |publisher=MultiMedia Animal Care, LLC |accessdate=30 June 2022}}</ref> Other applications of informatics in the veterinary lab include the development of diagnostic decision assistance systems, drug information systems, and electronic medical record systems.<ref name="VMRCVMAbout" />
 
====LIMSwiki resources====
 
* [[:Category:Veterinary LIMS|Veterinary LIMS]]
* [[Veterinary medicine]]
 
====Further reading====
 
* {{cite book |url=https://books.google.com/books?id=qTayAAAAQBAJ&printsec=frontcover |title=Veterinary Technician's Handbook of Laboratory Procedures |author=Bellwood, B.; Andrasik-Catton |publisher=John Wiley & Sons |year=2013 |pages=200 |isbn=9781118726044}}
 
<div align="center">-----Go to [[LII:The Laboratories of Our Lives: Labs, Labs Everywhere!/Discussion and closing remarks|the next chapter]] of this guide-----</div>


==References==
==References==
{{Reflist|colwidth=30em}}
{{Reflist|colwidth=30em}}
==Citation information for this chapter==
'''Chapter''': 6. Labs by industry: Part 4
'''Title''': ''The Laboratories of Our Lives: Labs, Labs Everywhere!''
'''Edition''': Second edition
'''Author for citation''': Shawn E. Douglas
'''License for content''': [https://creativecommons.org/licenses/by-sa/4.0/ Creative Commons Attribution-ShareAlike 4.0 International]
'''Publication date''': July 2022
<!--Place all category tags here-->

Latest revision as of 18:50, 22 March 2023

Sandbox begins below

5. Taking the next step

Specification leading to Design Documents.jpg

In section 3.4 of this guide, we briefly discussed how a user requirements specification (URS) fits into the process of purchasing laboratory informatics solutions for your manufacturing-focused laboratory. The URS has been viewed as a means for the purchaser to ensure their needs are satisfied by the functionality of the software. Traditionally, this has turned into a "wish list" for the purchaser, which while somewhat practical still lacks in its finesse. One common problem with this wishlist approach is the risk of "requirements creep," where more functionality than is truly necessary is desired, inevitably leading to a state where no vendor can meet all the wishlisted requirements. This makes selecting a solution even more difficult, particularly without significant prioritization skills.[1][2][3]

Noting the potential problems with this wishlist approach, LIMSpec—a specification document for laboratory informatics solutions—took a new approach and turned to standards and regulations that drive laboratories of all types, as well as the data they manage. LIMSpec was rebuilt based on ASTM E1578-18 Standard Guide for Laboratory Informatics, as well as dozens of other standards and regulations, while still leaving room for a software buyer to add their own custom requirements for their industry or lab.

The rest of this chapter examines the research, documentation, and acquisition process that manufacturing labs needing laboratory informatics solutions will want to go through, with an emphasis on the utility of a sound requirements specification. While LIMSpec is offered as a solid starting point, you don't strictly need to use LIMSpec to conduct this process; the information in this chapter can largely be applied with or without LIMSpec itself.


5.1 Conduct initial research into a specification document tailored to your lab's needs

A specification is "a detailed precise presentation of something or of a plan or proposal for something."[4] This concept of a specification as a presentation is critical to the laboratory seeking to find laboratory informatics software that fulfills their needs; they "present" their use case with the help of a requirements specification, and the vendor "presents" their ability (or inability) to comply through documentation and demonstration (more on that later). However, even the most seasoned of presenters at conferences and the like still require quality preparation before the presentation. This is where initial specification research comes into play for the lab.

Your lab's requirements specification document will eventually be a critical component for effectively selecting a laboratory informatics solution. There are numerous ways to approach the overall development of such a document. But why re-invent the wheel when others have already gone down that road? Sure, you could search for examples of such documents on the internet and customize them to your needs, or you and your team could brainstorm how a laboratory informatics solution should help your lab accomplish its goals. LIMSpec makes for one of the more thorough starting points to use, though you could also use other structured documents that have been developed by others. For the purposes of this guide, we'll look at LIMSpec.

The version of LIMSpec included in Appendix 1 of this guide is a slightly tweaked version of the original LIMSpec 2022 document, omitting a few of the specialty laboratory functions that aren't applicable to manufacturing laboratories. You'll note that it's divided into five distinct sections, with numerous subsections in each:

  • Primary Laboratory Workflow
    • 1. Sample and experiment registration
    • 2. Sample management
    • 3. Core laboratory testing and experiments
    • 4. Results review and verification
    • 5. Sample, experiment, and study approval and verification
    • 6. Reporting
  • Maintaining Laboratory Workflow and Operations
    • 7. Document and records management
    • 8. Resource management
    • 9. Compliance management
    • 10. Instrument and equipment management
    • 11. Batch and lot management
    • 12. Scheduled event management
    • 13. Instrument data capture and control
    • 14. Standard and reagent management
    • 15. Inventory management
    • 16. Investigation and quality management
  • Specialty Laboratory Functions (minus non-relevant industries)
    • 17. Production management
    • 18. Statistical trending and control charts
    • 19. Agriculture and food data management
    • 24. Scientific data management
  • Technology and Performance Improvements
    • 26. Instrument data systems functions
    • 27. Systems integration
    • 28. Laboratory scheduling and capacity planning
    • 29. Lean laboratory and continuous improvement
    • 30. Artificial intelligence and smart systems
  • Security and Integrity of Systems and Operations
    • 31. Data integrity
    • 32. Configuration management
    • 33. System validation and commission
    • 34. System administration
    • 35. Cybersecurity
    • 36. Information privacy

These sections and subsections should be able to address most any requirement you have for your system. Of course, if something isn't covered by LIMSpec, you can always add additional requirements.

During the initial research towards your URS, you won't have to include every requirement for when you approach potential vendors. Most vendors appreciate a more inviting approach that doesn't overwhelm, at least initially. You will want to go with a limited yet practical set of requirements carefully chosen because they matter to you and your laboratory the most. In fact, you'll want to wait until after participating in several software demonstrations before even considering your URS to be complete. (More on that in 5.3.1.) This naturally leads us to a discussion about the RFI process.


5.2 Issue some of the specification as part of a request for information (RFI)

In some cases—particularly if your organization is of significant size—it may make sense to issue a formal RFI or request for proposal (RFP) and have laboratory informatics vendors approach your lab with how they can meet its needs. The RFI and RFP are traditional means towards soliciting bidding interest in an organization's project, containing the organization's specific requirements and vital questions that the bidder should be able to effectively answer. However, even if your organization chooses to skip the RFI or RFP process and do most of the investigative work of researching and approaching informatics vendors, turning to a key set of questions typically found in an RFI is extremely valuable towards your fact finding.

An RFI is an ideal means for learning more about a potential solution and how it can solve your problems, or for when you're not even sure how to solve your problem yet. However, the RFI should not be unduly long and tedious to complete for prospective vendors; it should be concise, direct, and honest. This means not only presenting a clear and humble vision of your own organization and its goals, but also asking just the right amount of questions to allow potential vendors to demonstrate their expertise and provide a clearer picture of who they are. Some take a technical approach to an RFI, using dense language and complicated spreadsheets for fact finding. However, as previously noted, you will want to limit the specified requirements in your RFI to those carefully chosen because they matter to you and your lab the most.[5]

Remember, an RFI is not meant to answer all of your questions. The RFI is meant as a means to help narrow down your search to a few quality candidates while learning more about each other.[5] Once the pool of potential software vendors is narrowed down, and you then participate in their demonstrations, you then can broadly add more requirements to the original collection of critical requirements from the RFI to ensure those providers meet all or most of your needs. That said, be cognizant that there may be no vendor that can meet each and every need of your lab. Your lab will have to make important decisions about which requirements are non-negotiable and which are more flexible. The vendors you engage with may be able to provide realistic advice in this regard, based upon your lab's requirements and their past experience with labs. As such, those vendors with real-world experience meeting the needs of manufacturing laboratories may have a strong leg up on other vendors.

Again, Appendix 1 of this guide includes a comprehensive specifications document called LIMSpec, from which you can draw the requirements that are most critical to be addressed in an RFI. If you have zero experience developing an RFI, you may want to first seek out various example RFIs on the internet, as well as some basic advice articles on the topic. Some websites may provide templates to examine for further details. Broadly speaking, if you're conducting a full RFI or RFP, you're going to lead with the standard components of an RFI or RFP, including:

  • a table of contents;
  • an honest introduction and overview of your organization, its goals and problems, and the services sought to solve them;
  • details on how the RFI or RFP evaluation process will be conducted;
  • basis for award (if an RFP);
  • the calendar schedule (including times) for related events;
  • how to submit the document and any related questions about it, including response format; and
  • your organization's background, business requirements, and current technical environment.

Being honest about your organization, its informatics requirements, and its current technical environment upfront in the RFI or RFP will also ensure that the time spent on the process is optimized for all involved parties. Before submitting any RFI, your lab will want to conduct thorough internal research ensuring everyone understands what the current technology and processes are, and how you all want to shape that with the introduction or updating of laboratory informatics systems. (If your lab has limited to no experience with adding automation and informatics elements to a laboratory, you may want to read through laboratory informatics veteran Joe Liscouski's The Application of Informatics to Scientific Work: Laboratory Informatics for Newbies for further insight.) You'll also want to answer critical questions such as "who will be responsible for maintaining the solution and its security?" and "how will our processes and procedures change with the introduction or updating of informatics systems?". These and other questions make up your business considerations, which should also address the:

  • acquisition and long-term maintenance budget;
  • diversity of laboratory services offered now and into the future;
  • level of in-house knowledge and experience with informatics systems and automation;
  • level of in-house, executive buy-in of informatics adoption; and
  • need for additional vendor pre-planning.

One other note: make it clear in any issued RFI that it's strictly a request for information and not a guarantee to issue a contract with any respondent.


5.3 Respond to or open dialogue with vendors

If you went the route of the RFI, you hopefully received more than a few well-crafted responses. Your RFI presumably included a small but critical set of requirements that needed to be addressed, and the vendors who responded dutifully addressed those critical requirements. Even if you didn't send out an RFI, you at least did your own research about some of the big players in the laboratory informatics space, and you may have even opened an initial dialogue with a few of them. If all has gone well, you're now at the point where you've narrowed down the pool of vendors but still have a basket of them to continue dialogue with. (If you're not comfortably at this point after an RFI or engagements with multiple vendors, you may need to either reconsider the effectiveness of your RFI or engagements or enlist help from a knowledgeable and experienced consultant to help steer you back on-course.)

As dialogue continues with vendors, you'll have several points to address:

1. What do I want their laboratory information management system (LIMS) to do for me?

2. How does their solution fit into our previously discussed budget?

Regarding question one, you've already laid some of the groundwork for that with the help of your handful of critical requirements (and the associated research that went into developing them). Outside of those critical requirements, a laboratory informatics solution should also provide clearly definable benefits to how you operate your manufacturing laboratory. These expected benefits should tie in with your overall business mission and goals. Using a LIMS as an example, here are a few of the benefits a well-developed LIMS can provide to practically any laboratory. Whenever you go through the discovery process with a vendor, you'll be asking how their system provides these and other benefits through its functionality. A quality LIMS can provide[6][7]:

  • increased accuracy: the minimization or elimination of transcription and other errors;
  • streamlined processes: ensuring each process step in a protocol/method is completed in the proper order, with all requirements met, updating sample statuses automatically;
  • automation: integration with instruments, allowing for automatic uploading of samples and returning of results;
  • regulatory and standards compliance: functionality that aids with compliance, including reporting results to state and local authorities;
  • data security: role-based, configurable, secure access to data, processes, reporting, etc.;
  • flexible reporting: reporting tools that allows for the design and generation of certificates of authority and other reports to lab- and regulation-based specs;
  • instant data retrieval: query tools for finding data instantly according to any criteria (date range, test, product type, etc.); and
  • configurability and cost-effectiveness: a user-configurable system (as opposed to hard-coded, requiring development for any modifications) that is flexible enough to adapt to rapid changes in test volume and type over time, without breaking the bank.

As for the second question, budgeting is always a tricky topic, both internally and when discussing it with vendors. We already mentioned in the previous section that addressing the acquisition and long-term maintenance budget of your solution(s) must be addressed as part of your lab's business considerations. (And we already mentioned some cost considerations in 3.1.6; this discussion will add a few more points.) The fact that laboratory informatics systems like the LIMS come in all kinds of price ranges makes it difficult to judge if a given system, as priced, is appropriate for your lab and its budget. There are some basic cost realities associated with LIMS acquisition[8][9], which will help you understand where the vendor price comes from, and how it figures into your lab's budget (though some of these concepts may also apply to other informatics systems).

1. Vendor pricing is generally based on how many will be using the system. This can be measured in concurrent users (how many will be using the system at any one time) or named users (the number of total users who will ever use the system, by name). Additionally, laboratory informatics vendors increasingly offer the option of a cloud-hosted subscription, which of course has the advantage of not requiring your own IT department, and allowing labs to defray cost over time, with little or no actual license fee. Think about your usage strategy and choose the pricing format that makes the most sense for you.
2. Most costs are related to the work involved with installing, configuring, and migrating data to the system. Try to choose a solution that has what you need out of the box, as much as possible. The more customized or unique options you ask for up-front, the more it tends to cost, as extra items are a function of the time it takes developers to add them.
3. "User-configurable" beats "vendor-configurable" on cost-effectiveness. Some vendors offer a free or low-cost option, but don't be fooled. They are in business to make money, and they are counting on the fact that you'll need to pay them to make things work, add necessary functionality, and provide support and training. If you can find a vendor who offers a genuinely user-configurable system, and whose manuals and other support materials are clearly helpful and available so that you can adjust things the way you want, when you want, then that will go a long way toward budget efficiency and longevity.
4. Additional interfaces and reporting requirements cost money. If necessary, consider phasing in any additional instrument and software interfaces over time, as revenue eases cash flow. You can go live with your system operations more quickly, entering results manually until you can afford to interface your instruments one-by-one. This goes for reports as well; a simple reporting module that meets regulatory requirements will do. You can make your reports and other exportable documents more attractive later.

Ideally, your budget has room for roughly $40- to $80,000 minimum (including setup, training, interfaces, etc.) for a quality, full-featured professional LIMS or LIS, with $300 to $900 per month (depending on number of users) for ongoing subscriptions. At around five concurrent users, the economics start to favor purchasing perpetual licenses rather than paying for a subscription. Purchased licenses will also entail ongoing annual or monthly costs as well (e.g., maintenance, support, warranty for updates etc.) Subscriptions (if available) are generally aimed at smaller labs. If you will be growing and scaling up, it may be a great way to get started, but make sure you have the option to switch to perpetual licenses later.

With much of this information in hand, you're likely ready to move on to finalizing the requirements specification and choosing a vendor, but not before you've sat through a few highly useful demonstrations.

5.3.1 The value of demonstrations

ForUM demo (2659615090).jpg

A demonstration of laboratory informatics solution is an integral part of making your final decisions. The demo offers a unique and valuable opportunity to see in-person how data and information is added, edited, deleted, tracked, and protected within the context of the application; you can ask about how a function works and see it right then and there. Equally, it is an excellent time to compare notes with the vendor, particularly in regard to the critical requirement that were addressed in your RFI (or through direct communication with the vendor). You can ask the vendor in real-time to answer questions about how a specific task is achieved, and the vendor can ask you about your lab's system and workflow requirements and how you best envision them being implemented in the system (e.g., does this interface seem intuitive?).

A demonstration is typically performed online, which is useful for a couple of reasons, COVID-19 notwithstanding. First, it means you can schedule and reschedule at your convenience, with little in the way of logistics to arrange. Second, the demonstration session is likely to be recorded (verify this), so everyone is clear on what was promised and what wasn't, how processes were shown to work, etc. Additionally, you can later review parts you may have missed, forgotten, or not quite understood, and you can share it with others, who then also get a look at the proposed system in action.

Be careful about falling for the temptation of presenting a full URS or other specification document to the vendor during the demonstration. You'll want to wait until after participating in several software demonstrations to consider presenting your full specification document to the vendor, and that's assuming that you've grown enamored with their solution. By waiting to finalize your lab's requirements specification until after the demos, a common error is avoided: too often labs think the first thing they must do is create a requirements list, then sit back and let the informatics vendors tell them how they meet it. Remember that even though most labs thoroughly understand their processes, they likely don't have as strong a grasp on the informatics portion of their processes and workflows. Participating in a demo before finalizing your list of specified requirements—or having only a minimal yet flexible requirements list during the demo—is a great way to later crosscheck the software features you have seen demonstrated to your lab's processes and any initial requirements specification you've made.[10] After all, how can you effectively require specific manufacturing-related functions of your laboratory informatics software if you don't fully know what such an industry-specific system is capable of? After the demonstrations, you may end up adding several requirements to your final specifications document, which you later pass on to your potential vendors of choice for final confirmation.


5.4 Finalize the requirements specification and choose a vendor

Now that the demonstrations have been conducted and more questions asked, you should be close to finalizing your requirement specifications with one ore more vendors. In fact, you may have taken LIMSpec, chosen a few critical requirements from it, added them to a few unique requirements of your own, and included them as part of an RFI or question and answer session with vendors. You then likely took those responses and added them to your wider overall specification (e.g., LIMSpec), along with your own notes and observations from interacting with the vendor. This may have been repeated for several vendors and their offerings.

At this point, you're likely ready to either have those vendors complete the rest of the responses for their corresponding URS, or you may even be ready to narrow down your vendor selection. This all likely depends on what the initial fact finding revealed. How well did the vendors respond to your laboratory's unique set of needs? Were there critical areas that one vendor could address with their off-the-shelf solution but another vendor would have to address with custom coding? Did any of the vendors meet your budget expectations? Have you followed up on any references and customer experiences the vendors provided to you?

It may be that several vendors are appealing at this point, meaning it's time to have them respond to the rest of the URS. This makes not only for good due diligence, to better ensure most requirements can be met, but also a reviewable option for any "tie-breaker" you have between vendors. In reality, this tie-breaker scenario would rarely come up; more often, some other aspect of the software, company, or pricing will be a stronger limiter. However, you still want to get all those vendor responses, even if you've early on filtered your options down to one vendor.

Ultimately, your specification document may look similar to the LIMSpec, or it may have a slightly different format. Many prospective buyers will develop a requirement specification in Microsoft Excel, but that has a few minor disadvantages. Regardless of format, you'll want to give plenty of space for vendors to submit a response to each requirement. For your convenience, a Microsoft Word version of Appendix 1's LIMSpec for manufacturing labs is also included as part of this guide (see A8. LIMSpec in Microsoft Word format). That document is editable, giving end users and vendors the flexibility to remove information and enlarge columns.

Additionally, remember that often is the case that after the URS is completed and final questions asked, no single vendor can meet all your needs. Be ready for this possibility, whether it be a functionality requirement or a budget issue. Know ahead of time where your laboratory is willing to be flexible, and how much flex you have. After all of your lab's preparation, and with a little luck, you've found a vendor that fits the bill, even if a few minor compromises had to be made along the way.

References

  1. Aasem, M.; Ramzan, M.; Jaffar, A. (2010). "Analysis and optimization of software requirements prioritization techniques". Proceedings from the 2010 International Conference on Information and Emerging Technologies: 1–6. doi:10.1109/ICIET.2010.5625687. 
  2. Hirsch, J. (22 November 2013). "10 Steps To Successful Requirements Gathering". Phase2 Technology, LLC. https://www.phase2technology.com/blog/successful-requirements-gathering. Retrieved 07 December 2022. 
  3. Burris, E. (2007). "Requirements Specification". CS451R, University of Missouri–Kansas City. University of Missouri–Kansas City. Archived from the original on 25 September 2019. https://web.archive.org/web/20190925003040/http://sce2.umkc.edu/BIT/burrise/pl/requirements/. Retrieved 07 December 2022. 
  4. "specification". Merriam-Webster. Merriam-Webster, Inc. https://www.merriam-webster.com/dictionary/specification. Retrieved 07 December 2022. 
  5. 5.0 5.1 Holmes, T.. "It's a Match: How to Run a Good RFI, RFP, or RFQ and Find the Right Partner". AllCloud Blog. https://allcloud.io/blog/its-a-match-how-to-run-a-good-rfi-rfp-or-rfq-and-find-the-right-partner/. Retrieved 07 December 2022. 
  6. McLelland, A. (1998). "What is a LIMS - a laboratory toy, or a critical IT component?" (PDF). Royal Society of Chemistry. p. 1. Archived from the original on 04 October 2013. https://web.archive.org/web/20131004232754/http://www.rsc.org/pdf/andiv/tech.pdf. Retrieved 07 December 2022. 
  7. Joyce, J.R. (2010). "Industry Insights: Examining the Risks, Benefits and Trade-offs of Today’s LIMS". Scientific Computing (January/February 2010): 15–23. 
  8. Rosenberg, H.J. (28 March 2017). "How Much Does a LIMS Cost? Licensing and Beyond". SlideShare. https://www.slideshare.net/CSolsInc/how-much-does-a-lims-cost-licensing-and-beyond-pittcon-2017-tech-talk. Retrieved 07 December 2022. 
  9. "Saving Costs with LIMS". CSols, Inc. 25 October 2018. https://www.csolsinc.com/blog/saving-costs-with-lims/. Retrieved 07 December 2022. 
  10. Hammer, S. (27 June 2019). "How to Get the Most Value from an ERP Software Demo". The Takeoff. https://www.striven.com/blog/erp-software-demo. Retrieved 07 December 2022.