Difference between revisions of "User:Shawndouglas/sandbox/sublevel9"

From LIMSWiki
Jump to navigationJump to search
Tag: Reverted
 
(46 intermediate revisions by the same user not shown)
Line 8: Line 8:
==Sandbox begins below==
==Sandbox begins below==


==1. Introduction to ISO/IEC 17025==
==1. Introduction to manufacturing laboratories==
[[File:ISO Logo (Red square).svg|right|300px]][[ISO/IEC 17025|ISO/IEC 17025:2017]] ''General requirements for the competence of testing and calibration laboratories'' is an internationally recognized standard that places requirements on testing, calibration, and [[Sample (material)|sampling]] [[Laboratory|laboratories]] to demonstrate "the competence, impartiality, and consistent operation" of their business activities.<ref name="ISO17025_17">{{cite web |url=https://www.iso.org/standard/66912.html |title=ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories |publisher=International Organization for Standardization |date=November 2017 |accessdate=20 January 2023}}</ref> At its core, the standard places a strong focus on implementing procedural and [[Quality (business)|quality]] management mechanisms as a means towards meeting those goals. ISO/IEC 17025 has a long history that dates back to a time when international trade in the 1970s saw Japan leading the charge with its total quality efforts, driven by the desire to rebuild shattered industries after World War II. Japanese products just couldn't compete with the quality of other industrialized nations, and the Japanese clamored for something better. That focus on total quality eventually spread Westward in the 1980s.<ref name="ASQTotal">{{cite web |url=https://asq.org/quality-resources/history-of-quality#development |title=Total Quality |work=Learn About Quality |publisher=American Society for Quality |accessdate=20 January 2023}}</ref><ref>{{Cite journal |date=1993-01 |title=Total quality management: myth or miracle? |url=http://www.tandfonline.com/doi/abs/10.1080/09544129300000048 |journal=Total Quality Management |language=en |volume=4 |issue=4 |pages=5–8 |doi=10.1080/09544129300000048 |issn=0954-4127}}</ref> To this day, this desire for higher-quality goods and services by customers, clients, and other stakeholders continues to drive innovation and expansion in industry. Such is the path with quality, a trait demanded by and benefiting society in many ways.
According to McKinsey & Company, the U.S. manufacturing industry represents only 11 percent of U.S. gross domestic product (GDP) and eight percent of direct employment, yet it "makes a disproportionate economic contribution, including 20 percent of the nation’s capital investment, 35 percent of productivity growth, 60 percent of exports, and 70 percent of business R&D spending."<ref name="CarrDeliver22">{{cite web |url=https://www.mckinsey.com/capabilities/operations/our-insights/delivering-the-us-manufacturing-renaissance |title=Delivering the US manufacturing renaissance |author=Carr, T.; Chewning, E.; Doheny, M. et al. |work=McKinsey & Company |date=29 August 2022 |accessdate=24 March 2023}}</ref> These categories of economic contribution are important as many of them indirectly point to how the work of [[Laboratory|laboratories]] is interwoven within the manufacturing industry. As we'll discuss later in this chapter, manufacturing-based laboratories primarily serve three roles: research and development (R&D), pre-manufacturing and manufacturing, and post-production regulation and security (e.g., through exports and trade). We can be sure that if U.S. manufacturers' efforts represent huge chunks of total business R&D spending, trade, and capital expenditure (capex), a non-trivial amount of laboratory effort is associated with that spending. Why? Because R&D, trade, and manufacturing [[quality control]] (QC) activities rarely can occur without laboratories backing up their work.<ref>{{Cite journal |last=Ischi |first=H. P. |last2=Radvila |first2=P. R. |date=1997-01-17 |title=Accreditation and quality assurance in Swiss chemical laboratories |url=http://link.springer.com/10.1007/s007690050092 |journal=Accreditation and Quality Assurance |volume=2 |issue=1 |pages=36–39 |doi=10.1007/s007690050092 |issn=0949-1775}}</ref><ref>{{Cite book |last=Crow |first=Michael M. |last2=Bozeman |first2=Barry |date=1998 |title=Limited by design: R&D laboratories in the U.S. national innovation system |url=https://books.google.com/books?hl=en&lr=&id=OVPZvqz2e6UC |chapter=Chapter 1: The Sixteen Thousand: Policy Analysis, R&D Laboratories, and the National Innovation System |publisher=Columbia University Press |place=New York |pages=1–40 |isbn=978-0-585-04137-7}}</ref><ref>{{Cite journal |last=Grochau |first=Inês Hexsel |last2=ten Caten |first2=Carla Schwengber |date=2012-10 |title=A process approach to ISO/IEC 17025 in the implementation of a quality management system in testing laboratories |url=http://link.springer.com/10.1007/s00769-012-0905-3 |journal=Accreditation and Quality Assurance |language=en |volume=17 |issue=5 |pages=519–527 |doi=10.1007/s00769-012-0905-3 |issn=0949-1775}}</ref><ref>{{Cite journal |last=Ribeiro, À.S.; Gust, J.; Vilhena, A. et al. |year=2019 |title=The role of laboratories in the international development of accreditation |url=https://www.imeko.info/index.php/proceedings/7687-the-role-of-laboratories-in-the-international-development-of-accreditation |journal=Proceedings of the 16th IMEKO TC10 Conference "Testing, Diagnostics & Inspection as a comprehensive value chain for Quality & Safety" |pages=56–9}}</ref>


The ISO/IEC 17025 standard is one of a few standards that focuses on managing quality in the organization, yet it goes beyond standards like [[ISO 9000|ISO 9001]] by not only encouraging use of a quality system (i.e., a [[quality management system]] or QMS) but also setting standards of unbiased operational competence and consistency. The standard also is clear in its audience: testing, calibration, and sapling labs. Not all labs choose to adopt the standard, but those that do tend to find it rewarding, if not also a bit challenging.
Labs in the manufacturing sector provide vital services, including but not limited to [[quality assurance]] (QA), QC, production control, regulatory trade control (e.g., authenticity and adulteration), safety management, label claim testing, and packaging analysis. These activities occur in a wide array of manufacturing industries. Looking to the North American Industry Classification System (NAICS), employed by the U.S. Bureau of Labor Statistics (BLS), manufacturing industries and sub-industries include<ref name="BLSManufact23">{{cite web |url=https://www.bls.gov/iag/tgs/iag31-33.htm |title=Manufacturing: NAICS 31-33 |work=Industries at a Glance |publisher=U.S. Bureau of Labor Statistics |date=24 March 2023 |accessdate=24 March 2023}}</ref>:


The rest of this chapter will examine the ISO/IEC 17025 standard and its origins, and how it compares to standards like ISO 9001. It will also address how those labs choosing to embrace the standard provide a net benefit to society as a whole.
*apparel (e.g., knitted goods, cut-and-sew clothing, buttons and clasps)
*chemical (e.g., pesticides, fertilizers, paints, cleaning products, adhesives, electroplating solutions)
*electric power (e.g., light bulbs, household appliances, energy storage cells, transformers)
*electronics (e.g., sensors, semiconductors, electrodes, mobile phones, computers)
*food and beverage (e.g., baked goods, probiotics, preservatives, wine)
*furniture (e.g., mattresses, sofas, window blinds, light fixtures)
*leather (e.g., purses, saddles, footwear, bookbinding hides)
*machinery (e.g., mining augers, air conditioning units, turbines, lathes)
*materials (e.g., ceramics, cements, glass, nanomaterials)
*medical equipment and supplies (e.g., ventilators, implants, lab equipment, prosthetics, surgical equipment)
*metal forming and casting (e.g., steel beams, aluminum ingots, shipping containers, hand tools, wire)
*paper and printing (e.g., cardboard, sanitary items, stationery, books, bookbinding papers)
*petrochemical (e.g., solvents, fuel additives, biofuels, lubricants)
*pharmaceutical and medicine (e.g., antivenom, vaccines, lab-on-a-chip diagnostic tests, cannabis products, nutraceuticals)
*plastics and rubbers (e.g., dinnerware, tires, storage and shelving, outdoor furniture)
*textiles (e.g., carpeting, upholstery, bulk fabric, yarn)
*vehicular and aerospace (e.g., electric vehicles, reusable rocketry, railroad rolling stock, OEM auto parts)
*wood (e.g., plywood, flooring, lumber, handrails)


If you've ever used a sophisticated two-part epoxy adhesive to repair a pipe crack, used an indoor sun lamp, gotten a lot of mileage out of a pair of leather gloves, received a medical implant, taken a medication, eaten a Twinkie, or ridden on Amtrak, one or more laboratories were involved somewhere in the manufacturing process before using that item. From endless research and testing of prototypes to various phases of quality and safety testing, laboratory science was involved. The importance of the laboratory in manufacturing processes can't be understated.


===1.1 History of ISO/IEC 17025===
But what of the history of the manufacturing-focused lab? What of the roles played and testing conducted in them? What do they owe to safety and quality? This chapter more closely examines these questions and more.
ISO/IEC 17025's origins go back to the mid-1970s, when a conference on cross-border acceptance of laboratory test data led to the International Laboratory Accreditation Cooperation (ILAC) beginning work on what would eventually become ISO Guide 25 ''Guidelines for assessing the technical competence of testing laboratories'', with that work ultimately getting turned over to the [[International Organization for Standardization]] (ISO). The intent of developing the guide, published in 1978, was to gain international cooperation towards improving the world's laboratory services by promoting a scheme for accredited laboratory test results, such that the results could be more readily accepted across national borders.<ref name="SquirrelConform08">{{cite journal |last=Squirrell |first=A. |date=2008-09 |title=Conformity assessment: providing confidence in testing and calibration |url=http://link.springer.com/10.1007/s00769-008-0418-2 |journal=Accreditation and Quality Assurance |language=en |volume=13 |issue=9 |pages=543–546 |doi=10.1007/s00769-008-0418-2 |issn=0949-1775}}</ref><ref name="MiguelISO21">{{Cite journal |last=Miguel |first=Anna |last2=Moreira |first2=Renata |last3=Oliveira |first3=André |date=2021 |title=ISO/IEC 17025: HISTORY AND INTRODUCTION OF CONCEPTS |url=http://quimicanova.sbq.org.br/audiencia_pdf.asp?aid2=9279&nomeArquivo=AG2020-0467.pdf |journal=Química Nova |doi=10.21577/0100-4042.20170726}}</ref><ref name="VehringTested20">{{cite web |url=https://www.unido.org/sites/default/files/files/2020-06/Guide%20ISO%2017025-2017_online.pdf |format=PDF |title=Tested & Accepted: Implementing ISO/IEC 17025:2017 |author=Vehring, S. |publisher=United Nations Industrial Development Organization |date=June 2020 |accessdate=20 January 2023}}</ref> That first guide didn't address the activities of [[Reference laboratory|calibration labs]], however, and it would require further revisions, as the general guidelines towards proving a lab's technical competence were also inadequate.<ref name="MiguelISO21" /> For the next version—released in 1982 as ISO/IEC Guide 25: ''General requirements for the technical competence of testing laboratories''—the [[International Electrotechnical Commission]] (IEC) became involved. That version saw upgrades in proving technical competence, as well as the addition of the requirement for a quality system, though this revision also didn't address calibration labs.<ref name="MiguelISO21" /> The next version, released in 1990 as ISO/IEC Guide 25 ''General requirements for the competence of calibration and testing laboratories'', finally addressed calibration labs and, with the help of the Council Committee on Conformity Assessment (CASCO), lent "support for national systems, thus easing bilateral agreements" associated with laboratory testing.<ref name="SquirrelConform08" /><ref name="MiguelISO21" /><ref name="VehringTested20" /> It also added notice that by meeting the requirements of ISO/IEC Guide 25, labs would also comply with the ISO 9000 standard, which also focused on quality. Four years later, CASCO pushed to turn ISO/IEC Guide 25 into a full standard, and by 1999, ISO/IEC 17025:1999 ''General requirements for the competence of testing and calibration laboratories'' was born, which also met the requirements of ISO 9001.<ref name="SquirrelConform08" /><ref name="MiguelISO21" /><ref name="VehringTested20" />


Since then, the standard has seen two additional revisions, one in 2005 and another in 2017.<ref name="SquirrelConform08" /><ref name="MiguelISO21" /><ref name="VehringTested20" /> With the ISO 9001 standard being in revision at the same time ISO/IEC 17025:1999 was ready to release, the standard's views on ISO 9001 when published were antiquated, requiring the 2005 update.<ref name="MiguelISO21" /> The 2017 version included new requirements for competency, impartiality, and consistent laboratory operation and took on a revised structure from its 2005 predecessor, with the 2005 division between technical management and quality management being replaced by "a more unified focus on a laboratory's general responsibility management."<ref name="MiguelISO21" /> (For more on the differences between the 2005 and 2017 version, see the National Association of Testing Authorities' (NATA's) [https://nata.com.au/files/2021/05/17025-2017-Gap-analysis.pdf gap analysis document] comparing the two.<ref name="NATAGeneral18">{{cite web |url=https://nata.com.au/files/2021/05/17025-2017-Gap-analysis.pdf |format=PDF |title=General Accreditation Guidance: ISO/IEC 17025:2017 Gap analysis |author=National Association of Testing Authorities |date=April 2018 |accessdate=20 January 2023}}</ref>) As of January 2023, ISO/IEC 17025:2017 remains the latest version of the standard, putting a focus on labs seeking competent, impartial, and consistent results, with a focus on an efficient management system (i.e., a QMS).


===1.1 Manufacturing labs, then and now===
In 1852, the ''Putnam's Home Cyclopedia: Hand-Book of the Useful Arts'' was published as a dictionary-like source of scientific terms. Its definition of a laboratory at that time in U.S. history is revealing (for more on the equipment typically described with a laboratory of that time period, see the full definition)<ref name="AntisellPutnamArts52">{{cite book |url=https://books.google.com/books?id=vsI0AAAAMAAJ&pg=PA284 |title=Putnam's Home Cyclopedia: Hand-Book of the Useful Arts |author=Antisell, T. |publisher=George P. Putnam |volume=3 |pages=284-5 |year=1852 |accessdate=31 March 2023}}</ref>:


===1.2 ISO/IEC 17025 vs. ISO 9001===
<blockquote>'''Laboratory'''. The workshop of a chemist. Some laboratories are intended for private research, and some for the manufacture of chemicals on the large scale. Hence it is almost impossible to give a description of the apparatus and disposition of a laboratory which would be generally true of all. A manufacturing laboratory necessarily occupies a large space, while that of the scientific man is necessarily limited to a peculiar line of research. Those who study in organic chemistry have different arrangements than that of the mineral analyst.</blockquote>
Given the history of ISO/IEC 17025, the uninformed individual may wonder what the difference is between that and the ISO 9000 series of standards. While it is true that ISO 9001 is mentioned in the context of complying with ISO/IEC 17025, there are several differences, though the critical concept of quality management is found in both. Let's first talk about what ISO 9001 and the 9000 series are geared to do and how they address quality management.


The ISO 9000 family of standards addresses the fundamentals of QMSs for an organization<ref name="TsimAnAdapt02">{{cite journal |title=An adaptation to ISO 9001:2000 for certified organisations |journal=Managerial Auditing Journal |author=Tsim, Y.; Yeung, V.; Leung, E. |volume=17 |issue=5 |pages=245–50 |year=2002 |doi=10.1108/02686900210429669}}</ref>, including the eight management principles on which the family of standards is based.<ref name="TsimAnAdapt02" /><ref name="BeattieImplem10">{{cite journal |title=Implementing ISO 9000: A study of its benefits among Australian organizations |journal=Total Quality Management |author=Beattie, K.R. |volume=10 |issue=1 |pages=95–106 |year=2010 |doi=10.1080/0954412998090}}</ref> ISO 9001 deals with the requirements that organizations wishing to meet the standard have to fulfill.<ref>{{cite web |url=https://www.iso.org/standard/62085.html |title=ISO 9001:2015 Quality management systems — Requirements |publisher=International Organization for Standardization |date=September 2015 |accessdate=20 January 2023}}</ref> In turn, third-party certification bodies provide independent confirmation that organizations wishing to adhere to the standard meet the requirements of the standard.
This definition highlights the state of laboratories at the time: typically you either had a small private laboratory for experiments in the name of research and development (R&D) and producing prototype solutions, or you had a slightly larger "manufacturing laboratory" that was responsible for the creation of chemicals, reagents, or other substances for a wider customer base.<ref name="AntisellPutnamArts52" /><ref name="PorterTheChem30">{{cite book |url=https://books.google.com/books?id=zy8aAAAAYAAJ&pg=PA17&dq=manufacturing+laboratory |title=The Chemistry of the Arts; being a Practical Display of the Arts and Manufactures which Depend on Chemical Principles |chapter=Chemistry Applied to the Arts |author=Porter, A.L. |publisher=Carey & Lea |year=1830 |pages=17–18 |accessdate=06 April 2023 |quote=The larger laboratories, or workshops, which are used only in particular branches of business, and the necessary apparatus attached to them, will be considered under the several substances which are prepared in them. Besides the workshop, every operative chemist ought to devote some part of his premises as a small general elaboratory, fitted up with some furnaces and other apparatus as may enable him to make any experiment seemingly applicable to the improvement of his manufacturing process without loss of time, and immediately upon its inception.}}</ref><ref name="MarshSpeech46">{{cite book |url=https://books.google.com/books?id=ptg-AAAAYAAJ&pg=PA11&dq=manufacturing+laboratory |title=Speech of Mr. Marsh, of Vermont, on the Hill for Establishing the Smithsonian Institution, Delivered in The House of Representatives of the U. States, April 22, 1846 |author=Marsh, G. P. |publisher=J. & G.S. Gideon |year=1846 |page=11 |accessdate=06 April 2023 |quote=How are new substances formed, or the stock of a given substance increased, by the chemistry of nature or of art? By new combinations or decompositions of known and pre-existing elements. The products of the experimental or manufacturing laboratory are no new creations; but their elements are first extracted by the decomposition of old components, and then recombined in new forms.}}</ref> These laboratory types date back further than the mid-1800s, to be sure, though they also saw great change leading up to and after this time period. This is best characterized by the transition from the humble apothecary lab to the small-scale manufacturing laboratory before the mid-1800s, to the full-scale pharmaceutical manufacturing lab and facility well beyond the mid-1800s.


Quality management is defined by ISO 9000 as a set of "coordinated activities to direct and control an organization with regard to quality." By extension, those coordinated activities require sufficient "organizational structure, resources, processes and procedures" in order to implement quality management throughout the enterprise, otherwise known as a quality system.<ref name="WHOLQMS11">{{Cite web |last=World Health Organization |date=2011 |title=Laboratory Quality Management System: Handbook |url=http://apps.who.int/iris/bitstream/handle/10665/44665/9789241548274_eng.pdf?sequence=1 |format=PDF |publisher=World Health Organization |isbn=9789241548274}}</ref>
====1.1.1 From apothecary to small-scale manufacturing laboratory====
A critical area to examine in relation to the evolution of manufacturing laboratories involves pharmaceuticals and the apothecary, which is steeped in the tradition of making pharmaceutical preparations, as well as prescribing and dispensing them to customers. The idea of an individual who attempted to make medical treatments dates back to at least to 2000 BC, from which Sumerian documents reveal compounding formulas for various medicinal dosage types.<ref name="AllenAHist11">{{cite journal |url=https://www.perrigo.com/business/pdfs/Sec%20Artem%2011.3.pdf |archiveurl=https://web.archive.org/web/20130128014521/https://www.perrigo.com/business/pdfs/Sec%20Artem%2011.3.pdf |format=PDF |title=A History of Pharmaceutical Compounding |journal=Secundum Artem |author=Allen Jr., L.V. |volume=11 |issue=3 |year=2011 |archivedate=28 January 2013 |accessdate=06 April 2023}}</ref> By 1540, Swiss physician and chemist Paracelsus made a significant contribution to the early apothecary, influencing "the transformation of pharmacy from a profession based primarily on botanic science to one based on chemical science."<ref name="AllenAHist11" /> Thanks to Paracelsus and other sixteenth century practitioners, the concept of the apothecary became more formalized and chemistry-based in the early seventeenth century. With this formalization came the need for the regulation of apothecaries to better ensure the integrity of the profession. For example, the Master, Wardens and Society of the Art and Mystery of Pharmacopolites of the City of London was founded in 1617 through the Royal Charter of James the First, requiring an aspiring apothecary to conduct an apprenticeship or pay a fee, followed by taking an examination proving the individual's knowledge, skill, and science in the art.<ref name="AllenAHist11" /><ref name="Plough97">{{cite journal |url=https://www.google.com/books/edition/Pharmaceutical_Journal/ScDyXwC8McwC?hl=en&gbpv=1&dq=manufacturing+laboratory&pg=PA164&printsec=frontcover |title=The Plough Court Pharmacy |journal=The Pharmaceutical Journal |publisher=Pharmaceutical Society of Great Britain |volume=LVIII |pages=164–7, 247–51 |date=January to June 1897 |accessdate=06 April 2023}}</ref>  


Note that the discussion so far has focused on how the standard addresses the "organization" seeking to improve quality. That's because ISO 9001 is directed at all kinds of organizations operating in any type of industry and sector, whereas ISO/IEC 17025 specifically targets testing, calibration, and sampling laboratories. There are other differences from ISO/IEC 17025 as well, the most significant being that ISO 9001 deals strictly with deploying a QMS in the organization, whereas ISO/IEC 17025 expands into a toolbox of requirements for ensuring not only quality but also the "competence, impartiality, and consistent operation of laboratories."<ref name="ISO17025_17" />
However, despite this sort of early regulation, medical practitioners took exception to apothecaries encroaching upon the medical practitioners' own services, and apothecaries took exception to the untrained and uncertified druggists who were still performing the work of pharmacists. (As it turns out, these sorts of recriminations would continue on in some form or another into the beginning of the twenty-first century, discussed later.) But as an 1897 article from ''The Pharmaceutical Journal'' portrayed, the apothecaries likely wanted to have their cake and eat it too. "[W]hile the apothecaries urged, in the interest of the public, the desirability of a guarantee for the the competences of every person authorised to practise pharmacy," the journal noted, "they also sought, in their own interest, to extend the scope of their medical practice."<ref name="Plough97" /> This led to further debate and changes over time, including British Parliament declaring medicinal preparations as "very proper objects for taxation" in 1783, while at the same time requiring non-apprenticed apothecaries to apply annually for a license. By this time, most apprenticed apothecaries ceased being perceived as mere pharmacists and more as medical practitioners, though the Society's power of conferring medical qualifications, given to them in 1617, were by this point largely lost.<ref name="Plough97" />


Finally, accrediting to either of the two standards is also a different process, which highlights the inherent differences between the two standards. As laboratory consultancy Perry Johnson Consulting notes, the difference between the ISO/IEC 17025:2017 and ISO 9001:2015 standards can be found in comparing the accreditation process: "ISO/IEC 17025:2017 accreditation is recognition of a laboratory’s competence to produce technically valid results, while ISO 9001:2015 registration of a laboratory is limited to QMS conformance."<ref name="PJC17025_22">{{cite web |url=https://www.pjcinc.com/Downloads/ISOIEC17025_exov.pdf |format=PDF |title=ISO/IEC 17025:2017 Testing and Calibration Laboratories: An Executive Overview |author=Perry Johnson Consulting, Inc |date=January 2022 |accessdate=20 January 2023}}</ref> They add that ISO/IEC 17025:2017's "technical competency requirements go beyond QMS registration and relate specifically to the qualifications needed with regard to personnel, equipment, facilities, and laboratory methods."<ref name="PJC17025_22" />
By the end of the eighteenth century, apothecaries and druggists were setting up their own manufacturing laboratories to make chemical and pharmaceutical products. However, these labs were likely still limited in scope. In 1897, ''The Pharmaceutical Journal'' portrayed manufacturing labs as such, in the scope of the growing Plough Court Pharmacy run by William Allen and Luke Howard<ref name="Plough97" />:


From this, we may be tempted to conclude that—at least for the non-clinical laboratory (non-clinical because the clinical lab usually turns to [[ISO 15189|ISO 15189:2022]] ''Medical laboratories — Requirements for quality and competence'')—ISO/IEC 17025 is the quality management standard to comply with, end of story. However, the utility of ISO 9001 to the laboratory should not be completely dismissed. For those struggling with implementing the management system portion of ISO/IEC 17025, additional inspiration and guidance may be found in ISO 9001. For example, ISO 9001:2015 provides additional scope in establishing a QMS, particularly through identifying problematic issues and important stakeholders. It also expands discussion about the importance of organizational leadership establishing quality policy and the organization developing quality objectives, as well as the greater need for identifying organizational knowledge and fully implementing monitoring and measurement mechanisms.<ref name="HammarISO19">{{cite web |url=https://advisera.com/17025academy/blog/2019/07/11/iso-17025-vs-iso-9001-main-differences-and-similarities/ |title=ISO 17025 vs. ISO 9001 – Main differences and similarities |author=Hammar, M. |work=Advisera Blog |publisher=Advisera |date=11 July 2019 |accessdate=20 January 2023}}</ref> From this, the laboratory may gain additional benefits by supplementing their ISO/IEC 17025:2017 compliance with some aspects of ISO 9001:2015, further enabling a more [[Risk management|risk-based approach]] to managing quality in the lab.<ref name="HammarISO19" /> (For more about how the laboratory benefits from ISO/IEC 17025:2017, see section 2.3 of the next chapter.)
<blockquote>It is, however, difficult to at the present time to realise what must have been the position of a manufacturing chemist in 1797, or to comprehend, without some reflection, how limited was the range of his operations and how much his work was beset with difficulties which are now scarecely conceivable. At that time chemical industry was confined to the production of soap, the mineral acids, and some saline compounds then used in medicine. Among the latter, mercurial preperations held an important place, and some of these appear to have first received attention by the firm of Allen and Howard. The early laboratory account books of the firm mention ammoniacals, caustic potash, borax, argentic nitrate, and cream of tartar, as well as ether, benzoic acid, and refine camphor, which were then articles of the materia medics, citric, tartatic and oxalic acids, etc.</blockquote>


To be sure, other types of manufacturing were occurring during the rise and dominance of the apothecary, not just pharmaceutical manufacture. But, retrospectively, the pharmaceutical manufacturing lab in general was likely not in the best of shape as the nineteenth century approached. With several changes in Europe and United States in the early 1800s, the apothecary's manufacturing lab arguably saw more formalized and regulated activity, through various releases of pharmacopoeias<ref name="AllenAHist11" /><ref name="AndersonPharm13">{{cite web |url=http://www.histpharm.org/ISHPWG%20UK.pdf |format=PDF |title=Pharmacopoeias of Great Britain |work=A History of the Pharmacopoeias of the World |author=Anderson, S.C. |publisher=International Society for the History of Pharmacy |pages=1–8 |year=2013 |accessdate=06 April 2023}}</ref>, openings of new pharmacy schools (though still limited in scope)<ref name="DCTheEarly18">{{cite journal |url=https://books.google.com/books?id=P3kgAQAAMAAJ&pg=RA2-PA243-IA1&dq=manufacturing+laboratory |title=The Early Days of Pharmaceutical |journal=The Druggists Circular |volume=LXII |issue=6 |pages=244–5 |date=June 1918 |accessdate=06 April 2023}}</ref>, publishing of books<ref name="DCTheEarly18" />, and additional formalization of regulating legislation (such as Britain's Apothecaries Act of 1815).<ref name="Plough97" /> By the time the ''United States Pharmacopeia'' came upon the scene in 1820, the apothecary was viewed as "competent at collecting and identifying botanic drugs and preparing from them the mixtures and preparations required by the physician."<ref name="AllenAHist11" /> Pharmaceutical historian Loyd Allen, Jr. refers to this time period as "a time that would never be seen again," a sort of Golden Age of the apothecary, given the increasingly rapid rate that scientific and technological discoveries were being made soon after, particularly in synthetic organic chemistry.<ref name="AllenAHist11" />


===1.3 How we benefit from ISO/IEC 17025 laboratories===
Of course, the manufacturing lab—pharmaceutical and otherwise—had other issues as well. For example, just because a small-scale experimental R&D process yielded a positive result didn't mean that process was scalable to large-scale manufacturing. "Frequently, things work well on a small scale, and failure results when mass action comes into effect," noted Armour Fertilizer Company's president Charles McDowell in April 1917, while discussing American research methods.<ref name="McDowellAmerican17">{{cite journal |url=https://books.google.com/books?id=8pMPAQAAIAAJ&pg=PA546&dq=manufacturing+laboratory |title=American Research Methods |journal=Journal of the Western Society of Engineers |author=McDowell, C.A. |volume=XXII |issue=8 |year=1917 |pages=546–65 |accessdate=06 April 2023}}</ref> Sometimes a process was sufficiently simple that switching to more robust and appropriate apparatuses was all that was needed to scale up from experiment to full production.<ref name="RobertsonDesulph43">{{cite journal |url=https://books.google.com/books?id=3u01AQAAMAAJ&pg=RA1-PA444&dq=manufacturing+laboratory |title=Desulphuration of Metals |journal=Mechanics' Magazine, Museum, Register, Journal, and Gazette |editor=Robertson, J.C. |volume=38 |date=01 July 1843 |page=444 |accessdate=06 April 2023}}</ref> In other cases, a full-scale manufacturing laboratory process had yet to be developed, let alone the experiments conducted to develop a proof-of-concept solution in the experimental lab.<ref name="JacksonChemical43">{{cite journal |url=https://books.google.com/books?id=hrYxAQAAMAAJ&pg=PA379&dq=manufacturing+laboratory |title=Chemical Salts as Fertilizers |journal=New England Farmer, and Horticultural Register |author=Jackson, C.T. |publisher=Joseph Breck & Co |volume=XXL |issue=48 |page=379 |date=31 May 1843 |accessdate=06 April 2023}}</ref>
[[File:Seafood- FDA Lab 2908 (4494149455).jpg|left|260px]]The discussion so far has been useful in giving background about standards bodies giving organizations—including laboratories—a framework for improving operational quality, but how does this all relate to the primary question about ISO/IEC 17025 benefiting society? From here, it's useful to examine the importance of the laboratory itself to society. In the guide ''[[LII:The Laboratories of Our Lives: Labs, Labs Everywhere!|The Laboratories of Our Lives: Labs, Labs Everywhere!]]'', the first chapter emphasizes the ubiquity of the laboratory in the fabric of society, despite the lab being largely invisible to the average individual<ref name="DouglasLabs22">{{cite web |url=https://www.limswiki.org/index.php/LII:The_Laboratories_of_Our_Lives:_Labs,_Labs_Everywhere!/Laboratories:_A_historical_perspective |title=1. Laboratories: A historical perspective |work=The Laboratories of Our Lives: Labs, Labs Everywhere! |author=Douglas, S.E. |publisher=LIMSwiki |date=July 2022 |accessdate=20 January 2023}}</ref>:


<blockquote>Laboratories play an integral role in modern life, ubiquitous and often unseen by the average person. They improve quality of life, act as hotbeds of discovery, and help us make sense of our universe, particularly in the capable hands of the tens of thousands of professionals who work in them. But the laboratory as we know it today is actually a relatively new concept. It wasn't always as sectionally organized, well-staffed, and well-equipped. To gain a better sense of how common the laboratory is to our lives, we must first briefly look at the past history of laboratory research and how it developed from a philosophical and more selfish endeavor to one more focused on analysis and the benefits to society.</blockquote>
Another challenge the manufacturing lab had was in ensuring the stability of any laboratory manufactured solution. Discussing the British Pharmacopoeia-introduced substance of sulphurous acid for afflictions of the throat, Fellow of the Chemical Society Charles Umney noted the stability considerations of the substance when made in the manufacturing laboratory<ref name="UmneySulphurous69">{{cite journal |url=https://books.google.com/books?id=POkKAAAAYAAJ&pg=PA516&dq=manufacturing+laboratory |title=Sulphurous Acid |journal=Pharmaceutical Journal and Transactions |author=Umney, C. |publisher=John Churchill and Sons |volume=X |issue=IX |pages=516–20 |year=1869 |accessdate=06 April 2023}}</ref>:


Labs can be a hotbed of economic activity, as found with the United States' Argonne National Laboratory in Illinois, which claimed in 2021 to employ more than 3,400 people and have an approximately $168 million total economic impact on the state.<ref name="ArgonneOurImpact">{{cite web |url=https://www.anl.gov/argonne-impacts/illinois |title=Argonne Impacts State by State: Illinois |work=Argonne National Laboratory |publisher=UChicago Argonne, LLC |accessdate=20 January 2023}}</ref> Labs can also be a significant source of innovation to society, with the old Bell Telephone Laboratories at its peak employing some 1,200 PhDs and being responsible for the creation of vital technologies such as solid state components, wireless telephony technology, the C programming language, and the Unix operating system (thanks to Bell researchers like Ken Thompson and Dennis Ritchie).<ref name="GertnerTheIdea13">{{cite book |url=https://books.google.com/books?id=OkECDAAAQBAJ |title=The Idea Factory: Bell Labs and the Great Age of American Innovation |author=Gertner, J. |publisher=Penguin |year=2013 |pages=422 |isbn=9780143122791}}</ref> In fact, laboratories are often at the heart of a company's R&D efforts towards bringing people new products. Vehicle<ref name="VolvoMaterials">{{cite web |url=http://www.volvogroup.com/en-en/about-us/r-d-and-innovations/materials-technology.html |archiveurl=https://web.archive.org/web/20170629222307/http://www.volvogroup.com/en-en/about-us/r-d-and-innovations/materials-technology.html |title=Materials Technology |work=Volvo Group |publisher=AB Volvo |archivedate=29 June 2017 |accessdate=20 January 2023}}</ref> and makeup<ref name="LOrealUSAResearch">{{cite web |url=http://www.lorealusa.com/group/discover-l%27or%C3%A9al-usa/l%E2%80%99or%C3%A9al-usa-research-and-innovation |archiveurl=https://web.archive.org/web/20181021232022/http://www.lorealusa.com/group/discover-l'or%C3%A9al-usa/l%E2%80%99or%C3%A9al-usa-research-and-innovation |title=L’Oréal USA Research And Innovation |publisher=L’Oréal Group |archivedate=21 October 2018 |accessdate=20 January 2023}}</ref> users alike are affected by manufacturing laboratories that research, design, test, and [[quality control]] their products. Clinical labs help keep current and future generations healthy, and [[Forensic science#The forensic laboratory|forensic labs]] help bring justice to the wronged. Of course, calibration laboratories are vital to ensuring the precise measurement and production values of any equipment those other laboratories strongly depend on.
<blockquote>Now the Pharmacopoeia solution (which is about 37 volumes) was designedly made nearly one of saturation at the average summer temperature of this country, and, if one may be excused for making a guess, we described from calculations made from the above data of Bunsen's, and not practically worked out to see whether such a solution could be ordinarily obtained in the manufacturing laboratory without chance of failure, and, when made, be kept without great alteration in the various stages it would have to pass through, even if only from the manufacturer to the wholesale druggist, then to the pharmacists, in whose store it might retain for a year or more, being perhaps placed in a temperature many degrees above the point at which it was saturated, thereby causing expansion, liberation of gas, and inconvenience.</blockquote>


However, labs can and do fail (completely, or at their tasks)<ref name="AhujaWhy19">{{cite web |url=https://hbr.org/2019/07/why-innovation-labs-fail-and-how-to-ensure-yours-doesnt |title=Why Innovation Labs Fail, and How to Ensure Yours Doesn’t |author=Ahuja, S.B. |work=Harvard Business Review |date=22 July 2019 |accessdate=20 January 2023}}</ref><ref name="KeppelErrors20">{{Cite journal |last=Keppel |first=Martin H |last2=Cadamuro |first2=Janne |last3=Haschke-Becher |first3=Elisabeth |last4=Oberkofler |first4=Hannes |last5=Felder |first5=Thomas K |last6=Lippi |first6=Giuseppe |last7=Mrazek |first7=Cornelia |date=2020-06-15 |title=Errors within the total laboratory testing process, from test selection to medical decision-making – A review of causes, consequences, surveillance and solutions |url=https://www.biochemia-medica.com/en/journal/30/2/10.11613/BM.2020.020502 |journal=Biochemia medica |volume=30 |issue=2 |pages=215–233 |doi=10.11613/BM.2020.020502 |pmc=PMC7271754 |pmid=32550813}}</ref><ref name="ParvinMonit15">{{cite web |url=https://www.qcnet.com/resources/qc-articles/learning-from-laboratory-failures |title=Monitoring test system failures and QC performance can help identify opportunities for improvement |author=Parvin, C.A.; Yundt-Pacheco, J.; Quintenz, A. |work=QCNet |date=2015 |accessdate=20 January 2023}}</ref>, like any other business. This can happen for a number of reasons<ref name="AhujaWhy19" /><ref name="KeppelErrors20" />, though insufficient attention to risk and quality management is usually a major contributor.<ref name="ParvinMonit15" /><ref>{{Cite book |last=Mortimer |first=Sharon T. |last2=Mortimer |first2=David |date=2015 |title=Quality and risk management in the IVF laboratory |chapter=Chapter 4: What is risk? |edition=Second edition |publisher=Cambridge University Press |place=Cambridge, United Kingdom ; New York |pages=39–48 |isbn=978-1-107-42128-8}}</ref><ref name="MurrayRisk16">{{cite web |url=https://clpmag.com/lab-essentials/quality-systems/exploring-risk-management-lab/ |title=Exploring Risk Management in the Lab: Risk-based decisionmaking and appropriate analytical tools can improve lab quality |author=Murray, W. |work=CLP Magazine |date=10 May 2016 |accessdate=20 January 2023}}</ref> In fact, data and quality management are arguably at the heart of aiding not only in reducing errors in laboratory processes but also more rapidly recovering from errors in and strengthening the quality of processes.
Difficulties aside, as the 1800s progressed, the resources of a collaboratory manufacturing laboratory were often greater than those of the individual private laboratory, with enterprising businesses increasingly turning to larger labs for greater and more high-quality quantities of materials. For example, in a letter from the Royal Institution of Great Britain, editor William Crookes discussed the discovery of thallium, noting that the manufacturing lab of noted manufacturing chemists Hopkin and Williams were able to prepare chloride of thallium for him from two hundredweight (cwt) in less time than it took Crookes to make 10 pounds of sulfur in his private laboratory.<ref name="CrookesOnThe63">{{cite journal |url=https://books.google.com/books?id=0JHOIc5pHYwC&pg=PA172&dq=manufacturing+laboratory |title=On the Discovery of the Metal Thallium |journal=The Chemical News and Journal of Physical Chemistry |author=Crookes, W. |volume=VII |issue=175 |pages=172–6 |date=April 1863 |accessdate=06 April 2023}}</ref> This trend would continue into the late 1800s, for pharmaceutical and other manufactured goods.


Labs of all types should be addressing quality within their operations, particularly when those operations affect human and animal health. "Quality management is as applicable for the [[Clinical laboratory|medical laboratory]] as it is for manufacturing and industry," states the [[World Health Organization]] (WHO) in its 2011 ''Laboratory Quality Management System: Handbook''.<ref name="WHOLQMS11" /> While the medical laboratory is better covered by [[ISO 15189]] for its quality needs, the WHO's statement highlights that all laboratories can benefit from implementing quality management principles. This includes food and beverage laboratories, water and wastewater laboratories, and calibration laboratories, among many others.  
====1.1.2 From small-scale private manufacturing lab to larger-scale industrial manufacturing lab====
By the 1860s, numerous changes to the paradigm of the manufacturing lab were beginning to take shape, with noticeable momentum away from the small-scale private manufacturing labs to those larger in scope and output, putting competitive pressures on the smaller manufacturing labs.<ref name="PearsonThePrep11">{{cite journal |url=https://books.google.com/books?id=GyFFAQAAMAAJ&pg=PA415&dq=manufacturing+laboratory |title=The Preparation and Testing of Drugs |journal=The Journal of the Franklin Institute of the State of Pennsylvania |author=Pearson, W.A. |volume=CLXXI |issue=4 |pages=415–21 |date=April 1911 |accessdate=12 April 2023 |quote=All the large drug laboratories have been developed since 1860 ... The increase in number of manufacturing laboratories and the consequent increase in competition exerted an influence on the wholesale druggist.}}</ref> Take, for example, one of the largest U.S.-based enameled brick factories for its time, in 1896, which "[i]n addition to their manufacturing laboratory for slips, enamels and glazes, they maintain an analytical chemical laboratory, and have two chemists in their employ."<ref name="LockingtonEnamled96">{{cite journal |url=https://books.google.com/books?id=lj9PAQAAIAAJ&pg=RA1-PA350&dq=manufacturing+laboratory |title=Enamled Brick at Oaks, PA |journal=The Clay-Worker |author=Lockington, W.P. |volume=XXV |issue=4 |pages=350–51 |date=April 1896 |accessdate=07 April 2023}}</ref> Ten years prior, a report on the visit to the experimental and manufacturing laboratories of Louis Pasteur highlights the need for a more sizeable facility for meeting demand for the anthrax vaccine<ref name="RobertsonReport86">{{cite journal |url=https://books.google.com/books?id=a-AfAQAAIAAJ&pg=PA223&dq=manufacturing+laboratory |title=Report of Visit to the Laboratories of M. Pasteur at Paris |journal=The Veterinary Journal and Annals of Comparative Pathology |author=Robertson, W. |volume=XXIII |pages=223–7 |year=1886 |accessdate=07 April 2023}}</ref>:


Past research has shown that a well-implemented quality plan, paired with quality indicators, is significantly associated with improving laboratory services and client satisfaction.<ref>{{Cite journal |last=Mulleta |first=Daba |last2=Jaleta |first2=Fraol |last3=Banti |first3=Haile |last4=Bekele |first4=Bayissa |last5=Abebe |first5=Wake |last6=Tadesse |first6=Henok |last7=Eshetu |first7=Legesse |last8=Zewdu |first8=Adinew |last9=Botore |first9=Abera |last10=Tadesse |first10=Lamessa |last11=Debela |first11=Tessema |date=2021-07 |title=The Impact of Laboratory Quality Management System Implementation on Quality Laboratory Service Delivery in Health Center Laboratories of Oromia Region, Ethiopia |url=https://www.dovepress.com/the-impact-of-laboratory-quality-management-system-implementation-on-q-peer-reviewed-fulltext-article-PLMI |journal=Pathology and Laboratory Medicine International |language=en |volume=Volume 13 |pages=7–19 |doi=10.2147/PLMI.S314656 |issn=1179-2698}}</ref> In particular, the customer or client is increasingly seen as the most important element driving laboratory quality, supported by effective QMS implementation and improvement. "A QMS with customer focus as its heart is the core foundation for a business striving to attain distinction irrespective of technology, commercial strategy or organizational philosophy," notes Udoh and Eluwole, adding that "at the end of the day, the quality of a product will be determined by whether or not it fulfills customer requirements."<ref name="UdohTheImpact17">{{cite web |url=https://www.iaeng.org/publication/WCE2017/WCE2017_pp738-743.pdf |format=PDF |title=The Impact of Quality Management System in Laboratory Certification of Smartcards and Emerging Payment Technologies |author=Udoh, N.; Eluwole, O.T. |work=Proceedings of the World Congress on Engineering 2017, Volume II |isbn=978-988-14048-3-1 |date=July 2017 |accessdate=20 January 2023}}</ref> By extension, the end user of a product or service will be not only more satisfied but also safer for it.
<blockquote>To meet the demands upon the laboratory work for the supply of anthrax vaccine, the preparation of this is now carried out in an establishment apart from the experimental laboratory in connection with the Ecole Normale, where it was originally started. In the Rue Vaquelin, under the charge of educated assistants, M. Chamberland carries out the preparation on a large scale—the necessity for this being apparent when regard is had to the statement of the quantity demanded for France and other countries.</blockquote>


One can look to the Galaxy Note 7 battery explosion issue from Samsung in 2016 as an example, with 13 people known to have been injured and 47 reports of property damage having been filed.<ref name="HeathmanWeFinal17">{{cite web |url=https://www.wired.co.uk/article/galaxy-note-7-issues-what-happened |title=We finally know why Samsung's Galaxy Note 7s 'exploded' |author=Heathman, A. |work=Wired |date=24 January 2017 |accessdate=20 January 2023}}</ref> Later analysis by Counterpoint Research noted of the Galaxy Note 7 situation that “very often, laboratory times and testing periods are shrunk to expedite approval and release-to-market of key devices; it is possible all charging scenarios were not thoroughly tested."<ref name="UdohTheImpact17" /> The end result is injuries, property loss, and dissatisfied customers who begin to look elsewhere for a safer, more reliable product. The clinical and public health lab offers another example, with the [[World Health Organization]] (WHO) noting the negative consequences of laboratory error include unnecessary treatment, treatment complications, failure to provide the proper treatment, a delay in a correct diagnosis, greater costs, and poor patient outcomes. The cure, they add, is effectively implementing the QMS and adopting internationally recognized laboratory standards.<ref name="WHOLabQual">{{cite web |url=https://extranet.who.int/hslp/who-hslp-download/package/501/material/168 |format=PDF |title=Module 1, Overview of the Quality System, Introduction |author=World Health Organization |pages=1–9 |accessdate=20 January 2023}}</ref> Finally, the food supply chain can become adulterated by lack of quality and regulation (i.e., food fraud); however, laboratories focused of fighting food fraud and ensuring manufacturer quality help reduce public health threats, improve customer confidence and satisfaction, and improve economic output.<ref>{{Cite journal |last=Spink |first=John |last2=Moyer |first2=Douglas C. |last3=Park |first3=Hyeonho |last4=Wu |first4=Yongning |last5=Fersht |first5=Victor |last6=Shao |first6=Bing |last7=Hong |first7=Miao |last8=Paek |first8=Seung Yeop |last9=Edelev |first9=Dmitry |date=2015-12 |title=Introducing Food Fraud including translation and interpretation to Russian, Korean, and Chinese languages |url=https://linkinghub.elsevier.com/retrieve/pii/S0308814614014824 |journal=Food Chemistry |language=en |volume=189 |pages=102–107 |doi=10.1016/j.foodchem.2014.09.106}}</ref>
The author, William Robertson, then goes into greater detail of the many rooms and floors of the building housing the manufacturing laboratory and its apparatuses, highlighting the grandness of the lab's efforts.


Quality management also improves overall costs and efficiency for not only the laboratory but also society.<ref>{{Cite journal |last=Rao |first=Dd |date=2021 |title=ISO/IEC 17025: Accreditation standard for testing and calibration laboratories |url=http://www.rpe.org.in/text.asp?2021/44/3/121/334784 |journal=Radiation Protection and Environment |language=en |volume=44 |issue=3 |pages=121 |doi=10.4103/rpe.rpe_41_21 |issn=0972-0464}}</ref><ref name="GarberAGuide21">{{cite web |url=https://www.garbermetrology.com/iso-17025/ |title=A Guide to ISO 17025 Calibration and Compliance |author=Garber Metrology |work=Garber Metrology Blog |date=14 December 2021 |accessdate=20 January 2023}}</ref><ref name="AdviseraWhatIs22">{{cite web |url=https://advisera.com/17025academy/what-is-iso-17025/ |title=What is ISO 17025? |publisher=Advisera Expert Solutions Ltd |date=2022 |accessdate=20 January 2023}}</ref><ref name="RaibornTQM96">{{Cite journal |last=Raiborn |first=Cecily |last2=Payne |first2=Dinah |date=1996-09 |title=TQM: Just what the ethicist ordered |url=http://link.springer.com/10.1007/BF00705576 |journal=Journal of Business Ethics |language=en |volume=15 |issue=9 |pages=963–972 |doi=10.1007/BF00705576 |issn=0167-4544}}</ref> Raiborn and Payne noted this in the mid-1990s while discussing the topic of "total quality management"<ref name="RaibornTQM96" />:
The change from small-scale private to larger-scale industrial manufacturing labs—in turn seemingly being supplanted by analytical laboratories<ref name="TWDDrugClerks02">{{cite journal |url=https://books.google.com/books?id=qG8gAQAAMAAJ&pg=PA405&dq=manufacturing+laboratory |title=Drug Clerks and Labor Unions |journal=The Western Druggist |author=The Western Druggist |volume=XXIV |issue=7 |page=405 |date=July 1902 |accessdate=12 April 2023}}</ref>—is arguably best seen in the transition from the apothecary and pharmacist to the large-scale pharmaceutical manufacturer. During this time of change in the late 1800s, laws dictating higher manufacturing quality, educational requirements, and restrictions on who can sell medicines were derided, debated, or cheered, depending on who was involved.<ref name="LillyTheRel83">{{cite journal |url=https://books.google.com/books?id=VlyFy6zJQpUC&pg=RA2-PA258&dq=manufacturing+laboratory |title=The Relation of Manufacturing Pharmacists to Pharmacy Laws |journal=The Pharmacist and Chemist |author=Lilly, J.K. |volume=XVI |issue=1 |pages=258–9 |date=January 1883 |accessdate=06 April 2023}}</ref><ref name="ParkerSomeAsp96">{{cite journal |url=https://books.google.com/books?id=bSnnAAAAMAAJ&pg=PA183&dq=manufacturing+laboratory |title=Some Aspects of Technical Pharmacy |journal=American Druggist and Pharmaceutical Record |author=Parker, C.E. |volume=XXVIII |issue=6 |pages=183–4 |date=25 March 1896 |accessdate=12 April 2023}}</ref>


<blockquote>Who benefits from prompt, reasonable-cost throughput? The answer is easy: everyone. Customers benefit because they get what they want, when they want it, and at a reasonable price. Satisfied customers are repeat customers, which means that employees benefit because production and, therefore, jobs will continue. The company benefits because shortened lead time means lowered investment and faster cash flow; satisfied, repeat customers and efficient processes also mean higher profits and, thus, happy stockholders. Society benefits because there is greater availability of resources for alternative purposes since prices have fallen (or greater value is being provided for the same price) and companies will continue in business, providing numerous positive societal effects from their existence (tax payments, employment, charitable contributions, etc.).</blockquote>
Reading for a meeting at the Kings County Pharmaceutical Society of Ohio, Charles E. Parker had the following to say about the state of the apothecary-turned-pharmacist in 1896, which fully highlights the transition from small-scale private to larger-scale industrial manufacturing of pharmaceuticals<ref name="ParkerSomeAsp96" />:


While Raiborn and Payne's quote specifically refers to improvements in costs and efficiency within the organization due to proper quality management, their words sum up quite well the overall benefits to society laboratory quality management brings. A product or service—whether it be the analytical results of the laboratory itself or the larger macro view of safer, more high-quality products and services via laboratory testing—that meets customer requirements is the end result of quality laboratory work, and society benefits from it thanks in part to well-implemented quality management mechanisms. Without them, products and services are more risky to use, more apt to have health-impeding impurities and contaminates, less beneficial, and more expensive.
<blockquote>The modern pharmacist succeeds to all the responsibilities and obligations of the ancient apothecary without opposition, but his utmost efforts have not preserved to him his inheritance of former privileges and emoluments ... Technical skill is of no use to the professional side of pharmacy unless it is used, and used for the public welfare as well as that of its possessor. The dispenser is the ''typical'' pharmacist. But where in former years his sphere included many activities and much manipulative expertness in the preparation of drugs, and even the production of many of them, the midern tendancy is for him to become a mere compounder and dispenser. Of course he is expected to know how, but actually is seldom required to perform the operations once a matter of constant routine. Step by step the productive processes of his little laboratory have been transferred to the works of large manufacturers. Year by year the pharmaceutical improvements and useful inventions which would once have conferred reputation and profit upon the dispensing pharmacies where they originated, have found a better market through these same manufacturers ... In addition, it is to be considered that some of the requisites of modern pharmacy are of a nature involving the use of expensive machinery and large plant, which places their production quite beyond the reach of the pharmacy.</blockquote>
 
Writing for the ''Pharmaceutical Review'' in 1897, editor Dr. Edward Kremers penned an editorial on the role of the manufacturing laboratory in the growing pharmaceutical industry, noting that "[d]uring the past hundred years a most remarkable industrial revolution has taken place," and that pharmacy was also victim to that, lamenting that the apothecaries of the beginning of the century—along with the druggists of 1897—had largely become "relics of the past."<ref name="KremersTheManu97">{{cite journal |url=https://books.google.com/books?id=4BU4AQAAMAAJ&pg=PA61&dq=manufacturing+laboratory |title=The Manufacturing Laboratory in the Household of Pharmacy |journal=Pharmaceutical Review |author=Kremers, E. |volume=15 |issue=4 |pages=61–7 |date=April 1897 |accessdate=12 April 2023}}</ref> Kremers also touched upon another complaint popular at the time: that of pharmacy as a money-making venture.<ref name="TWDDrugClerks02" /><ref name="KremersTheManu97" /> In his editorial, Kremers says:
 
<blockquote>It is a hope cherished by some that higher education will revolutionize pharmacy of today and lift her out of her present unenviable situation. The manufacturing industries, however, have revolutionized pharmacy of fifty years ago and are to no small extent coresponsible for the present state of affairs. The pharmaceutical profession as a whole is justified in asking what a particular branch is doing for the general good. Is the pharmaceutical manufacturer in the erection of his buildings, in the equipment of his laboratories and in the selection of his working force simply bent upon making so many thousands of dollars a paying investment, viewed from a merely commercial standpoint, or are his doings influenced to some extent to at least by higher than purely necessary motives.</blockquote>
 
By the early years of 1900, recognition of the sea-level change to the apothecary, pharmacist, and manufacturing laboratory had arguably gained traction, and by 1920 it was largely accepted<ref name="BealAward19">{{cite journal |url=https://books.google.com/books?id=GQlOAAAAMAAJ&pg=PA475&dq=manufacturing+laboratory |title=Award of the Joseph B. Remington Honor Medal |journal=The Midland Druggist and Pharmaceutical Review |author=Diner, J.; Beal, J.H. |volume=LIII |issue=12 |pages=475–9 |date=December 1919 |accessdate=12 April 2023}}</ref>. Writing for ''The Rocky Mountain Druggist'' in 1908, pharmaceutical doctor Geo H. Meeker laid it out in no uncertain terms:
 
<blockquote>Large manufacturing establishments can, for the most part, furnish the druggist at lower prices, with better authentic goods than he himself could produce, assay and guarantee. The inevitable result is that the druggist of today purchases finished products rather than raw materials as did the apothecary of yesterday. It is obvious that a large manufacturing establishment, conducted on ethical lines, employing a complete corps of specialists, buying raw materials to the best advantage and by assay only, making preparations on a large and intelligent technical scale and testing and assying the finished products, does a work that is too immense in its scope for the individual apothecary ... Our present remnant of the drug store laboratory is, as in the past, essentially a manufacturing laboratory. It is of limited and rapidly vanishing scope because the small local laboratory man cannot successfully compete with his rivals, the great and highly-organized factories.</blockquote>
 
Similar comments were being made by Pearson in 1911<ref name="PearsonThePrep11" />, Thiesing in 1915<ref name="Thiesing15">{{cite journal |url=https://books.google.com/books?id=b_5EAQAAMAAJ&pg=PA1203&dq=manufacturing+laboratory |title=Proceedings of the Joint Session of the Commercial Section and Section on Education and Legislation - Chairman Thiesing's Address |journal=The Journal of the Americam Pharmaceutical Association |author=Thiesing, E.H. |volume=IV |issue=10 |pages= |date=October 1915 |accessdate=12 April 2023}}</ref>, and Beal in 1919.<ref name="BealAward19" /> Beal in particular spoke solemnly of the transition, largely complete by the time of his acceptance of the Joseph P. Remington Honor Medal in 1919. Speaking of Remington and his experiences in pharmacy, until his death in 1918, Beal said<ref name="BealAward19" />:
 
<blockquote>Professor Remington's professional experience bridged the space between two distinct periods of pharmaceutical development. When he began his apprenticeship the apothecary, as he was then commonly called, was the principal manufacturer as well as the purveyor of medical supplies ... He lived to see the period when the apothecary ceased to be the principal producer of medicinal compounds and became mainly the purveyor of preparations manufactured by others, and when the medicinal agents in most common use assumed a character that required for the successful production the resources of establishments maintained by large aggregations of capital and employing large numbers of specially trained workers.
 
To those who knew him intimately it was evident that although Professor Remington did not welcome the passing of the manufacturing functions of the apothecary to the large laboratory, he at length came to realize that such a change was inevitable, that it was but a natural step in the process of social evolution, and that the logical action of the apothecary was not to resist that which he could neither prevent nor change, but to readjust himself to the new conditions.</blockquote>
 
Of course, by then, the rise of the industrial research lab within large-scale manufacturing enterprises was in full swing.
 
====1.1.3 The rise of the industrial research lab within large-scale manufacturing, and today's manufacturing landscape====
Like the small, privately owned manufacturing labs evolving to large-scale company-run manufacturing labs, so did the research processes of prior days. The individual tinkering with research in their private laboratory and making small batches of product gave way to a collective of individuals with more specialized talents cooperatively working in a large industrial manufacturing center towards a common, often complex research goal, i.e., within the industrial research laboratory.<ref name="MeesTheOrg20">{{cite book |url=https://books.google.com/books?id=rDIuAAAAYAAJ&printsec=frontcover&dq=industrial+research+laboratories |title=The Organization of Industrial Scientific Research |chapter=Chapter 1: Introduction |author=Mees, C.E.K. |publisher=McGraw-Hill Book Company, Inc |pages=4–10 |year=1920 |accessdate=12 April 2023}}</ref><ref name="BoydPutting24">{{cite journal |url=https://books.google.com/books?id=lYkiAQAAMAAJ&pg=RA23-PA22&dq=industrial+research+laboratories |title=Putting Research to Work |journal=A.E.C. Bulletin - Invention and The Engineer's Relation to It |author=Boyd, T.A. |publisher=American Engineering Council |pages=22–9 |date=May 1938 |accessdate=12 April 2023}}</ref> Those larger manufacturing entities that didn't have an industrial research lab were beginning to assess the value of adding one, while smaller enterprises that didn't have the resources to support an extensive collection of manufacturing and research labs were increasingly joining forces "to maintain laboratories doing work for the whole industry."<ref name="MeesTheOrg20" />
 
But what drove the advance of the industrial research lab? As the National Research Council pointed out in 1940, "individuals working independently could not, for very long, provide the technical and scientific knowledge essential to a rapidly developing industrial nation."<ref name="NRCRsearch40">{{cite book |url=https://nap.nationalacademies.org/read/20233/chapter/4#34 |title=Research—A National Resource, II—Industrial Research |author=National Research Council |publisher=United States Government Printing Office |date=December 1940 |accessdate=13 April 2023}}</ref> Newly emerging industries had a need for new knowledge to feed their growth, and they proved to be the early adopters of establishing separate research departments or divisions in their businesses, unlike businesses in long-established industries. The First World War was also responsible for driving organized research efforts in various industries to solve not only wartime problems but also plant the seed of development in peacetime industries. By 1920, two-thirds of all research workers surveyed by the National Research Council were employed in the emerging electrical, chemical, and rubber industries, though the overall adoption of industrial research approaches was still limited across all companies.<ref name="NRCRsearch40" />
 
In 1917, the previously mentioned Charles McDowell presented his view of American research and manufacturing methods of his time, referring to research as "diligent inquiry."<ref name="McDowellAmerican17" /> In his work, McDowell stated three types of research that leads up to the manufacturing process: pure scientific inquiry, industrial research, and factory research. He noted that of pure scientific inquiry, little thought is typically given to whether the research—often conducted by university professors—will have any real commercial value, though such value is able to emerge from this fundamental research. As for factory research, McDowell characterized it as full-scale factory-level operations that range from haphazard approaches to well-calculated contingency planning, all of which could make or break the manufacturing business.
 
In regards to the middle category of industrial research, McDowell made several observations that aptly described the state of manufacturing research in the early 1900s. He noted that unlike pure scientific inquiry, industrial research had commercial practicality as a goal, often beginning with small-scale experiments while later seeking how to reproduce those theoretical results into large-scale manufacturing. He also reiterated his point about needing to "have good backing" financially. "The larger manufacturer maintains his own staff and equipment to carry out investigations along any line that may seem desirable," he said, "but the smaller industries are not able to support an establishment and must rely on either consulting engineers or turn their problems over to some equipped public or private laboratory to solve."<ref name="McDowellAmerican17" />
 
In his 1920 book ''The Organization of Industrial Scientific Research'', Mees presented these three types of research somewhat similarly, though in the context of the industrial laboratory and its operations. Mees argued that industrial laboratories could be classified into three divisions<ref name="MeesTheOrg20" />:
 
*Laboratories "working on pure theory and the fundamental sciences associated with the industry," aligning in part with McDowell's "pure scientific inquiry";
*Work laboratories "exerting analytical control over materials, processes and product," aligning slightly with McDowell's "factory research" but more akin to the modern quality control lab; and
*Industrial laboratories "working on improvements in product and in processes," aligning with McDowell's "industrial research."
 
Mees argued in particular that those industrial research laboratories that simply improve products and processes were not doing enough; they should, necessarily, also direct some of their goals towards more fully understanding the fundamental and underlying theory of the topic of research.<ref name="MeesTheOrg20" /> In other words, Mees suggested that those labs simply working on theoretical and fundamental science research, as well as those labs conducting industrial research to improve products and processes, shouldn't necessarily function in separate vacuums. "Research work of this fundamental kind involves a laboratory very different from the usual works laboratory and also investigators of a different type from those employed in a purely industrial laboratory," he noted. Of course, this hybrid approach to fundamental and industrial research was largely reserved for the largest of manufacturers, and solutions were needed for smaller manufacturing endeavors. Here, like McDowell in 1917, Mees argued for smaller businesses with limited resources adopting both cooperative laboratory (those businesses that pool resources together for a fully supported research laboratory) and consulting laboratory (a third-party lab with the resources to fully study a problem, undertake investigations, model a manufacturing process, and implement that process into its client's factory, all for a fee) approaches.<ref name="MeesTheOrg20" /> With such solutions, the industrial research laboratory continued to take on a new level of complexity to address emerging industry needs, far from the humble origins of an early nineteenth-century manufacturing laboratory.
 
This growth or industrial research would continue onward from the twentieth century into the twenty-first century. In 1921, some 15 companies maintained research groups of more than 50 people; by 1938, there were 120 such businesses.<ref name="NRCRsearch40" /> By the 1990s, "the share of funding for basic research provided by industry actually grew from 10 percent to 25 percent of the national total, even though basic research accounted for just 5-7 percent of total R&D expenditures by industry."<ref name="UsselmanResearch13">{{cite web |url=https://economics.yale.edu/sites/default/files/usselman_paper.pdf |title=Research and Development in the United States since 1900: An Interpretive History |author=Usselman, S.W. |publisher=Yale University |date=11 November 2013 |accessdate=13 April 2023}}</ref> This trend of large research groups continues today, though with the recognition that smaller teams may still have advantages. In a 2019 article in the ''Harvard Business Review'', Wang and Evans recognize "large teams as optimal engines for tomorrow’s largest advances," while smaller research teams are better poised to ask disruptive questions and make innovative discoveries.<ref name="WangResearch19">{{cite web |url=https://hbr.org/2019/02/research-when-small-teams-are-better-than-big-ones |title=Research: When Small Teams Are Better Than Big Ones |work=Harvard Business Review |authors=Wang, D.; Evans, J.A. |date=21 February 2019 |accessdate=13 April 2023}}</ref>
 
 
===1.2 Laboratory roles and activities in the industry===
Today, the "manufacturing laboratory" is a complex entity that goes beyond the general idea of a lab making or researching things. Many of the historical aspects discussed prior still hold today, but other aspects have changed. As indicated in the introduction, the world of manufacturing encompasses a wide swath of industries and sub-industries, each with their own nuances. Given the nuances of pharmaceutical manufacturing, food and beverage development, petrochemical extraction and use, and other industries, it's difficult to make broad statements about manufacturing laboratories in general. However, the rest of this guide will attempt to do just that, while at times pointing out a few of those nuances found in specific industries.
 
The biggest area of commonality is found, unsurprisingly, in the roles manufacturing-based labs play today, as well as the types of lab activities they're conducting within those roles. These roles prove to be important in the greater scheme of industry activities, in turn providing a number of benefits to society. As gleaned from prior discussion, as well as other sources, these laboratory roles can be broadly broken into three categories: research and development (R&D), pre-manufacturing and manufacturing, and post-production regulation and security. Additionally, each of these categories has its own types of laboratory activities.
 
The scientific disciplines that go into these laboratory roles and activities is as diverse as the manufacturing industries and sub-industries that make up the manufacturing world. For example, the
food and beverage laboratory taps into disciplines such as [[biochemistry]], [[biotechnology]], [[chemical engineering]], [[chemistry]], fermentation science, materials science, [[microbiology]], molecular gastronomy, and nutrition.<ref name="NolletHand15">{{cite book |url=https://books.google.com/books?id=KtAdCgAAQBAJ&printsec=frontcover |title=Handbook of Food Analysis (Two Volume Set) |editor=Nollet, L.M.L.; Toldrá, F. |publisher=CRC Press |edition=3rd |pages=1568 |year=2015 |isbn=9781482297843}}</ref><ref name="NielsenFood15">{{cite book |url=https://books.google.com/books?id=i5TdyXBiwRsC&printsec=frontcover |title=Food Analysis Laboratory Manual |author=Nielsen, S. |publisher=Springer |pages=177 |edition=2nd |year=2015 |isbn=9781441914620}}</ref><ref name="DouglasTheLabs22">{{cite book |url=https://www.limswiki.org/index.php/LII:The_Laboratories_of_Our_Lives:_Labs,_Labs_Everywhere!/Labs_by_industry:_Part_2 |chapter=Labs by industry: Part 2 |title=The Laboratories of Our Lives: Labs, Labs Everywhere! |author=Douglas, S.E. |publisher=LIMSwiki |edition=2nd |date=July 2022 |accessdate=13 April 2023}}</ref><ref>{{Cite book |last=Bhandari, B.; Roos, Y.H. |date=2012 |editor-last=Bhandari |editor-first=Bhesh |editor2-last=Roos |editor2-first=Yrjö H. |title=Food Materials Science and Engineering |chapter=Chapter 1: Food Materials Science and Engineering: An Overview |publisher=Wiley-Blackwell |place=Chichester, West Sussex, UK ; Ames, Iowa |pages=1–25 |isbn=978-1-4051-9922-3}}</ref> However, the paper and printing industry taps into disciplines such as biochemistry, [[biology]], chemistry, environmental science, engineering, forestry, and physics.<ref name="BajpaiEnviro10">{{cite book |url=https://books.google.com/books?id=zjEeUpwepFMC&printsec=frontcover |title=Environmentally Friendly Production of Pulp and Paper |chapter=Chapter 2: Overview of Pulp and Papermaking Processes |author=Bajpai, P. |publisher=John Wiley & Sons |pages=8–45 |year=2010 |isbn=9780470528105 |accessdate=13 April 2023}}</ref><ref>{{Citation |last=Nykänen |first=Panu |date=2018 |editor-last=Särkkä |editor-first=Timo |editor2-last=Gutiérrez-Poch |editor2-first=Miquel |editor3-last=Kuhlberg |editor3-first=Mark |title=Research and Development in the Finnish Wood Processing and Paper Industry, c. 1850–1990 |url=http://link.springer.com/10.1007/978-3-319-94962-8_3 |work=Technological Transformation in the Global Pulp and Paper Industry 1800–2018 |publisher=Springer International Publishing |place=Cham |volume=23 |pages=35–64 |doi=10.1007/978-3-319-94962-8_3 |isbn=978-3-319-94961-1 |accessdate=2023-04-13}}</ref> By extension, the reader can imagine that these and other industries also have a wide variety of laboratory techniques associated with their R&D, manufacturing, and post-production activities.
 
The following subsections more closely examine the three roles manufacturing-based labs can play, as well as a few examples of lab-related activities found within those roles.
 
====1.2.1 R&D roles and activities====
The National Institute of Standards and Technology (NIST) and its Technology Partnerships Office offer a detailed definition of manufacturing-related R&D as an activity "aimed at increasing the competitive capability of manufacturing concerns," and that "encompasses improvements in existing methods or processes, or wholly new processes, machines or system."<ref name="NISTDefin19">{{cite web |url=https://www.nist.gov/tpo/definition-manufacturing-related-rd |title=Definition of Manufacturing-related R&D |author=Technology Partnerships Office |publisher=National Institute of Standards and Technology |date=31 July 2019 |accessdate=14 April 2023}}</ref> They break this down into four different technology levels<ref name="NISTDefin19" />:
 
*Unit process-level technologies that create or improve manufacturing processes,
*Machine-level technologies that create or improve manufacturing equipment,
*Systems-level technologies for innovation in the manufacturing enterprise, and
*Environment- or societal-level technologies that improve workforce abilities and manufacturing competitiveness.
 
Obviously, this definition applies to actual development of and innovation towards methods of improving and streamlining manufacturing processes. However, this same concept can, in part, can be applied to the actual products made in a manufacturing plant. Not only does product-based R&D focus on improving "existing methods and processes," but it also focuses on "manufacturing competitiveness" by developing new and innovating existing products that meet end users' needs. Laboratories play an manufacturing-based R&D laboratories play an important role in this regard.
 
The laboratory participating in this role is performing one or more tasks that relate to the development or improvement of a manufactured good. This often leads to a commercial formulation, process, or promising insight into a product. The R&D lab may appear outside the manufacturing facility proper, but not necessarily always. Some manufacturing companies may have an entire research complex dedicated to creating and improving some aspect of their products.<ref name="MonBreak16">{{cite web |url=https://ir.mondelezinternational.com/news-releases/news-release-details/mondelez-international-breaks-ground-new-research-development |title=Mondelez International Breaks Ground for New Research & Development Center in Poland |publisher=Mondelez International |date=08 June 2016 |accessdate=13 April 2023}}</ref> Other companies may take their R&D to a third-party consulting lab dedicated to conducting development and formulation activities for manufacturers.<ref name="BSCommForm">{{cite web |url=https://www.bevsource.com/news/why-you-need-commercial-formula |title=Why You Need A Commercial Formula |publisher=BevSource |date=13 August 2022}}</ref><ref name="GudeSol19">{{cite book |chapter=Solutions Commonly Applied in Industry and Outsourced to Expert Laboratories |title=Food Contact Materials Analysis: Mass Spectrometry Techniques |author=Gude, T. |editor=Suman, M. |publisher=Royal Society of Chemistry |doi=10.1039/9781788012973-00245 |isbn=9781788017190 |year=2019}}</ref> Industrial research activities aren't confined to manufacturers, however. Some higher education institutions provide laboratory-based research and development opportunities to students engaging in work-study programs, often in partnership with some other commercial enterprise.<ref name="HartFoodBev">{{cite web |url=https://www.hartwick.edu/about-us/center-for-craft-food-and-beverage/ |title=Hartwick College Center for Craft Food & Beverage |publisher=Hartwick College |accessdate=13 April 2023}}</ref>
 
The following types of lab-related activities may be associated with the R&D role:
 
'''Overall product development and innovation''': Jain ''et al.'' noted in their book on managing R&D activities that in 2010, 60 percent of U.S. R&D was focused on product development, while 22 percent focused on applied research and 18 percent on basic research. However, they also argue that any R&D lab worth its weight should have a mix of these activities, while also including customer participation in the needs assessment and innovation activities that take place in product development and other research activities. Jain ''et al.'' define a manufacturer's innovation activities as "combining understanding and invention in the form of socially useful and affordable products and processes."<ref>{{Cite book |url=https://books.google.com/books?id=nSgebaFKwvMC&pg=PA8 |last=Jain |first=Ravi |last2=Triandis |first2=Harry Charalambos |last3=Weick |first3=Cynthia Wagner |date=2010 |title=Managing research, development and innovation: Managing the unmanageable |chapter=Chapter 1: R&D Organizations and Research Categories |edition=3rd |publisher=Wiley |place=Hoboken, N.J |pages=8 |isbn=978-0-470-40412-6}}</ref> As the definition denotes, newly developed products ("offerings") and processes (usually which improve some level of efficiency and effectiveness) come out of innovation activities. Additionally, platforms that turn existing components or building blocks into a new derivative offering (e.g., a new model or "generation" of product), as well as "solutions that solve end-to-end customer problems," can be derived from innovation. Those activities can focus on more risky radical innovation to a new product or take a more cautious incremental approach to improvements on existing products.<ref>{{Cite book |url=https://books.google.com/books?id=nSgebaFKwvMC&pg=PA240 |last=Jain |first=Ravi |last2=Triandis |first2=Harry Charalambos |last3=Weick |first3=Cynthia Wagner |date=2010 |title=Managing research, development and innovation: Managing the unmanageable |chapter=Chapter 12: Models for Implementing Incremental and Radical Innovation |edition=3rd |publisher=Wiley |place=Hoboken, N.J |pages=240–241 |isbn=978-0-470-40412-6}}</ref>
 
'''Reformulation''': Reformulation involves the material substitution of one or more raw materials used in the production of a product to accomplish some stated goal. That goal may be anything from reducing the toxicity or volume of wastes generated<ref name=":0">{{Cite book |last=Dupont |first=R. Ryan |last2=Ganesan |first2=Kumar |last3=Theodore |first3=Louis |date=2017 |title=Pollution prevention: sustainability, industrial ecology, and green engineering |url=https://books.google.com/books?id=3m4NDgAAQBAJ&pg=PA382 |edition=Second edition |publisher=CRC Press, Taylor & Francis Group, CRC Press is an imprint of the Taylor & Francis Group, an informa business |place=Boca Raton |pages=382 |isbn=978-1-4987-4954-1}}</ref><ref name=":1">{{Cite book |date=2022 |editor-last=Wang |editor-first=Lawrence K. |editor2-last=Wang |editor2-first=Mu-Hao Sung |editor3-last=Hung |editor3-first=Yung-Tse |title=Waste Treatment in the Biotechnology, Agricultural and Food Industries: Volume 1 |url=https://books.google.com/books?id=JxaIEAAAQBAJ&pg=PA108 |series=Handbook of Environmental Engineering |language=en |publisher=Springer International Publishing |place=Cham |volume=26 |pages=108–9 |doi=10.1007/978-3-031-03591-3 |isbn=978-3-031-03589-0}}</ref><ref name=":2">{{Cite web |last=Committee on Environment and Public Works |date=28 September 2000 |title=Federal Formulated Fuels Act of 2000: Report of the Committee on Environment and Public Works, United States Senate |url=https://books.google.com/books?id=dk-gi6ZZ_KsC&pg=PA1 |publisher=U.S. Government Printing Office |accessdate=13 April 2023}}</ref> and improving the overall healthiness of the product<ref name=":3">{{Cite book |last=World Health Organization |date=2022 |title=Reformulation of food and beverage products for healthier diets: policy brief |url=https://apps.who.int/iris/handle/10665/355755 |language=en |publisher=World Health Organization |place=Geneva |isbn=978-92-4-003991-9}}</ref><ref name=":4">{{Cite book |date=2019 |editor-last=Raikos |editor-first=Vassilios |editor2-last=Ranawana |editor2-first=Viren |title=Reformulation as a Strategy for Developing Healthier Food Products: Challenges, Recent Developments and Future Prospects |url=https://books.google.com/books?id=zkG1DwAAQBAJ&pg=PA1 |language=en |publisher=Springer International Publishing |place=Cham |doi=10.1007/978-3-030-23621-2 |isbn=978-3-030-23620-5}}</ref>, to transitioning from traditional holistic medicine approaches to more modern biomedical approaches.<ref name=":5">{{Cite book |date=2019 |editor-last=Lechevalier |editor-first=Sébastien |title=Innovation Beyond Technology: Science for Society and Interdisciplinary Approaches |url=https://books.google.com/books?id=Sx2nDwAAQBAJ&pg=PA133 |series=Creative Economy |language=en |publisher=Springer Singapore |place=Singapore |pages=133–7 |doi=10.1007/978-981-13-9053-1 |isbn=978-981-13-9052-4}}</ref> Examples of products that have seen reformulation by manufacturers include:
 
*Paints and other coatings<ref name=":0" />,
*Fuels such as gasoline<ref name=":2" />,
*Foods and beverages<ref name=":3" /><ref name=":4" />, and
*Pharmaceuticals and cosmetics.<ref name=":1" /><ref name=":5" />
 
In the end, reformulation is a means for improving impacts on the end user, the environment, or even the long-term budget of the manufacturer. The type of lab activities associated with reformulation largely varies by product; the laboratory methods used to reformulate gasoline may be quite different from those in a food and beverage lab. Reformulation can also be a complicated process, as found with pharmaceutical products. The reformulated product "must have the same therapeutic effect, stability, and purity profile" as the original, while maintaining pleasing aesthetic qualities to the end user. Adding to the problem is regulatory approval times of such pharmaceutical reformulations.<ref name=":1" />
 
'''Nondestructive testing and materials characterization''': Raj ''et al.'' describe nondestructive testing (NDT) as "techniques that are based on the application of physical principles employed for the purpose of determining the characteristics of materials or components or systems and for detecting and assessing the inhomogeneities and harmful defects without impairing the usefulness of such materials or components or systems."<ref name=":7">{{Cite book |last=Raj, B.; Jayakumar, T.; Thavasimuthu, M. |year=2014 |title=Practical Non-Destructive Testing |url=https://archive.org/details/practicalnondest0000rajb |edition=Ninth Reprint, 3rd |publisher=Narosa Publishing House Pvt. Ltd |isbn=9788173197970}}</ref> NDT has many applications, including with food, steel, petroleum, medical devices, transportation, and utilities manufacturing, as well as electronics manufacturing.<ref>{{Cite book |last=Huang |first=Songling |last2=Wang |first2=Shen |date=2016 |title=New Technologies in Electromagnetic Non-destructive Testing |url=https://books.google.com/books?id=YuCvCwAAQBAJ&printsec=frontcover |chapter=Chapter 1: The Electromagnetic Ultrasonic Guided Wave Testing |series=Springer Series in Measurement Science and Technology |language=en |publisher=Springer Singapore |place=Singapore |pages=1 |doi=10.1007/978-981-10-0578-7 |isbn=978-981-10-0577-0}}</ref><ref>{{Cite book |date=2020-09-29 |editor-last=Tian |editor-first=Guiyun |editor2-last=Gao |editor2-first=Bin |title=Electromagnetic Non-Destructive Evaluation (XXIII) |url=https://books.google.com/books?id=by4NEAAAQBAJ&printsec=frontcover |series=Studies in Applied Electromagnetics and Mechanics |publisher=IOS Press |volume=45 |doi=10.3233/saem45 |isbn=978-1-64368-118-4}}</ref><ref>{{Cite book |date=2010 |editor-last=Jha |editor-first=Shyam N. |title=Nondestructive Evaluation of Food Quality: Theory and Practice |url=https://books.google.com/books?id=RXIJu3TRPWEC&printsec=frontcover |language=en |publisher=Springer Berlin Heidelberg |place=Berlin, Heidelberg |doi=10.1007/978-3-642-15796-7 |isbn=978-3-642-15795-0}}</ref> It also plays an important role in materials testing and characterization.<ref>{{Cite book |date=2016 |editor-last=Huebschen |editor-first=Gerhard |title=Materials characterization using nondestructive evaluation (NDE) methods |url=https://books.google.com/books?id=ZR1rBgAAQBAJ&printsec=frontcover |series=Woodhead Publishing series in electronic and optical materials |publisher=Elsevier/Woodhead Publishing |place=Amsterdam ; Boston |isbn=978-0-08-100040-3 |oclc=932174125}}</ref> NDT and materials testing is often used as a quality control mechanism during manufacturing (see the next subsection), but it can also be used during the initial R&D process to determine if a prototype is functioning as intended or a material is satisfactory for a given application.<ref name=":7" />
 
'''Stability, cycle, and challenge testing''': Multiple deteriorative catalysts can influence the shelf life of a manufactured product, from microbiological contaminants and chemical deterioration to storage conditions and the packaging itself. As such, there are multiple approaches to taming the effects of those catalysts, from introducing additives to improving the packaging.<ref name="SubramaniamTheStab16">{{Cite book |date=2016 |editor-last=Subramaniam |editor-first=Persis |title=The stability and shelf life of food |url=https://www.worldcat.org/title/mediawiki/oclc/956922925 |series=Woodhead Publishing Series in Food Science, Technology and Nutrition |edition=Second edition |publisher=Elsevier/WP, Woodhead Publishing |place=Amsterdam |isbn=978-0-08-100436-4 |oclc=956922925}}</ref> However, stability, cycle, and challenge testing must be conducted on many products to determine what deleterious factors are in play. The analytical techniques applied in stability, cycle, and challenge testing will vary based on, to a large degree, the product matrix and its chemical composition.<ref name="SubramaniamTheStab16" /> Microbiological testing is sure to be involved, particularly in challenge testing, which simulates what could happen to a product if contaminated by a microorganism and placed in a representative storage condition.<ref>{{Cite book |last=Komitopoulou, E. |date=2011 |editor-last=Kilcast |editor-first=David |editor2-last=Subramaniam |editor2-first=Persis |title=Food and beverage stability and shelf life |url=https://www.worldcat.org/title/mediawiki/oclc/838321011 |chapter=Microbiological challenge testing of food |series=Woodhead Publishing Series in Food Science, Technology and Nutrition |publisher=WP, Woodhead Publ |place=Oxford |pages=507–526 |isbn=978-0-85709-254-0 |oclc=838321011}}</ref><ref name=":6">{{Cite book |last=Chen, S.-C. |date=2018 |editor-last=Warne |editor-first=Nicholas W. |editor2-last=Mahler |editor2-first=Hanns-Christian |title=Challenges in Protein Product Development |url=https://books.google.com/books?id=LyVhDwAAQBAJ&pg=PA264&dq=Stability,+cycle,+and+challenge+testing |chapter=Chapter 12: Container Closure Integrity Testing of Primary Containers for Parenteral Products |series=AAPS Advances in the Pharmaceutical Sciences Series |language=en |publisher=Springer International Publishing |place=Cham |volume=38 |pages=257–290 |doi=10.1007/978-3-319-90603-4 |isbn=978-3-319-90601-0}}</ref> Calorimetry, spectrophotometry, spectroscopy, and hyperspectral imaging may be used to properly assess color, particularly when gauging food quality.<ref name="SubramaniamTheStab16" /> Other test types that may be used include water content, texture, viscosity, dispersibility, glass transition, and gas chromatography.<ref name="SubramaniamTheStab16" /> In the end, the substrate being examined will be a major determiner of what kind of lab methods are used. The lab method chosen for stability, cycle, and challenge testing should optimally be one that errs on the side of caution and is appropriate to the test, even if it takes longer. As Chen notes: "A longer test cycle is less a concern for stability protocol as the study typically has a limited number of samples. Applying a less reliable method to the limited number of samples in a stability study can be problematic."<ref name=":6" />
 
'''Packaging analysis and extractable and leachable testing''': Materials that contact pharmaceuticals, foods and beverages, cosmetics, and more receive special regulatory consideration in various parts of the world. This includes alloys, bioplastics, can coatings, glass, metals, regenerated cellulose materials, paper, paperboard, plastics, printing inks, rubber, textiles, waxes, and woods.<ref>{{Cite book |date=2021 |editor-last=Baughan |editor-first=Joan Sylvain |title=Global Legislation for Food Contact Materials |url=https://www.worldcat.org/title/mediawiki/oclc/on1272898230 |series=Woodhead Publishing Series in Food Science, Technology and Nutrition |edition=Second edition |publisher=Woodhead Publishing |place=Oxford |isbn=978-0-12-821181-6 |oclc=on1272898230}}</ref> As such, meeting regulatory requirements and making inroads with packaging development can be a complicated process. Concerns of chemicals and elements that can be extracted or leach into sensitive products add another layer of complexity to developing and choosing packaging materials for many manufactured goods. This requires extractable and leachable testing at various phases of product development to ensure the packaging selected during formulation is safe and effective.<ref name=":6" /><ref name="BaloghTesting11">{{cite journal |url=https://www.chromatographyonline.com/view/testing-critical-interface-leachables-and-extractables |title=Testing the Critical Interface: Leachables and Extractables |author=Balogh, M.P. |journal=LCGC North America |volume=29 |issue=6 |pages=492–501 |year=2011}}</ref> Extractable and leachable testing for packaging could involve a number of techniques ranging from gas and liquid chromatography to ion chromatography and inductively coupled plasma mass spectrometry.<ref name="LAExtract">{{cite web |url=https://leeder-analytical.com/extractables-and-leachables-testing/ |title=Extractables and leachables testing (E&Ls) |publisher=Leeder Analytical |accessdate=14 April 2023}}</ref>
 
====1.2.2 Pre-manufacturing and manufacturing roles and activities====
The laboratory participating in these roles is performing one or more tasks that relate to the preparative (i.e., pre-manufacturing) or [[quality control]] (QC; i.e., manufacturing) activities of production. An example of preparative work is conducting allergen, calorie, and nutrition testing for a formulated food and beverage product. Calorie and nutrition testing—conducted in part as a means of meeting regulation-driven labeling requirements—lands firmly in the role of pre-manufacturing activity, most certainly after commercial formulation and packing requirements have been finalized but before the formal manufacturing process has begun.<ref name="BSNutTest">{{cite web |url=https://www.bevsource.com/news/what-do-i-need-know-about-nutrition-testing-my-beverage-brand |title=What Do I Need To Know About Nutrition Testing for My Beverage Brand? |publisher=BevSource |date=14 April 2023}}</ref> Allergen testing works in a similar fashion, though the manufacturer ideally uses a full set of best practices for food allergen management and testing, from confirming allergens (and correct labeling) from ingredients ordered to performing final production line cleanup (e.g., when a new allergen-free commercial formulation is being made or an unintended contamination has occurred).<ref name="CA80-2020">{{cite web |url=https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXC%2B80-2020%252FCXC_080e.pdf |format=PDF |title=Code of Practice on Food Allergen Management for Food Business Operators, CXC 80-2020 |work=Codex Alimentarius |date=2020 |accessdate=14 April 2023}}</ref> These types of pre-production analyses aren't uncommon to other types of manufacturing, discussed below.
 
As for in-process manufacturing QC, some QC and [[quality assurance]] (QA) methods may already be built into the manufacturing process in-line, not requiring a lab. For example, poka-yokes—mechanisms that inhibit, correct, or highlight errors as they occur, as close to the source as possible—may be built in-line to a manufacturing process to prevent a process from continuing should a detectable error occur, or until a certain condition has been reached.<ref name="DanielPoka21">{{cite web |url=https://www.techtarget.com/searcherp/definition/poka-yoke |title=poka-yoke |author=Daniel, D. |work=TechTarget ERP - Definition |date=October 2021 |accessdate=14 April 2023}}</ref><ref>{{Cite book |last=Dogan, O.; Cebeci, U. |date=2021 |editor-last=García Alcaraz |editor-first=Jorge Luis |editor2-last=Sánchez-Ramírez |editor2-first=Cuauhtémoc |editor3-last=Gil López |editor3-first=Alfonso Jesús |title=Techniques, Tools and Methodologies Applied to Quality Assurance in Manufacturing |url=https://link.springer.com/10.1007/978-3-030-69314-5 |chapter=Chapter 1: An Integrated Quality Tools Approach for New Product Development |language=en |publisher=Springer International Publishing |place=Cham |pages=3–22 |doi=10.1007/978-3-030-69314-5 |isbn=978-3-030-69313-8}}</ref> However, despite the value of inline QC/QA, these activities also happen beyond the production line, in the laboratory (discussed further, below).
 
The following types of lab-related activities may be associated with the pre-manufacturing and manufacturing role:
 
'''Various pre-manufacturing analyses''': Also known as pre-production, some level of laboratory activity takes place here. Like the previously mentioned food and beverage industry, the garment manufacturing industry will have its own laboratory-based pre-production activities, including testing various raw material samples for potential use and quality testing pre-production samples before deciding to go into full production.<ref name="BaukhPreprod20">{{cite web |url=https://techpacker.com/blog/manufacturing/pre-production-processes-in-garment-manufacturing/ |title=Pre-production processes in garment manufacturing |author=Baukh, O. |work=Techpacker |date=14 October 2020 |accessdate=14 April 2023}}</ref> In another example, a manufacturer intending to produce "a new chemical substance for a non-exempt commercial purpose" in the U.S. must submit a pre-manufacture notice to the Environmental Protection Agency (EPA), which must include "test data on the effect to human health or the environment."<ref name="EPAFiling22">{{cite web |url=https://www.epa.gov/reviewing-new-chemicals-under-toxic-substances-control-act-tsca/filing-pre-manufacture-notice-epa |title=Filing a Pre-manufacture Notice with EPA |work=Reviewing New Chemicals under the Toxic Substances Control Act (TSCA) |publisher=U.S. Environmental Protection Agency |date=26 October 2022 |accessdate=14 April 2023}}</ref>
 
'''Quality control testing''': While QC testing can appear in multiple manufacturing laboratory roles, it's most noticeable in the pre-manufacturing and manufacturing role. Manufacturers in many industries have set up formal testing laboratories to better ensure that their products conform to a determined set of accepted standards, whether those standards come from a standards-setting organization
 
 
NDT and materials testing, discussed in the prior subsection about R&D, can also occur during the various phases of manufacturing, as part of an overall quality control effort.<ref name=":7" />
 
====1.2.3 Post-production regulation and security roles and activities====
The laboratory participating in these roles is performing one or more tasks that relate to the post-production examination of products for regulatory, security, or accreditation purposes. Labs are often third parties accrediting a producer to a set of standards, ensuring regulatory compliance, conducting authenticity and adulteration testing, conducting security checks at borders, and applying contamination testing as part of an overall effort to track down contamination sources. In addition to ensuring a safer product, society also benefits from these and similar labs by better holding producers legally accountable for their production methods and obligations.
 
The following types of lab-related activities may be associated with the post-production regulation and security role:
 
'''Authenticity and adulteration testing''':
 
'''Accreditation-led testing''':


==References==
==References==
{{Reflist|colwidth=30em}}
{{Reflist|colwidth=30em}}

Latest revision as of 23:30, 14 April 2023

Sandbox begins below

1. Introduction to manufacturing laboratories

According to McKinsey & Company, the U.S. manufacturing industry represents only 11 percent of U.S. gross domestic product (GDP) and eight percent of direct employment, yet it "makes a disproportionate economic contribution, including 20 percent of the nation’s capital investment, 35 percent of productivity growth, 60 percent of exports, and 70 percent of business R&D spending."[1] These categories of economic contribution are important as many of them indirectly point to how the work of laboratories is interwoven within the manufacturing industry. As we'll discuss later in this chapter, manufacturing-based laboratories primarily serve three roles: research and development (R&D), pre-manufacturing and manufacturing, and post-production regulation and security (e.g., through exports and trade). We can be sure that if U.S. manufacturers' efforts represent huge chunks of total business R&D spending, trade, and capital expenditure (capex), a non-trivial amount of laboratory effort is associated with that spending. Why? Because R&D, trade, and manufacturing quality control (QC) activities rarely can occur without laboratories backing up their work.[2][3][4][5]

Labs in the manufacturing sector provide vital services, including but not limited to quality assurance (QA), QC, production control, regulatory trade control (e.g., authenticity and adulteration), safety management, label claim testing, and packaging analysis. These activities occur in a wide array of manufacturing industries. Looking to the North American Industry Classification System (NAICS), employed by the U.S. Bureau of Labor Statistics (BLS), manufacturing industries and sub-industries include[6]:

  • apparel (e.g., knitted goods, cut-and-sew clothing, buttons and clasps)
  • chemical (e.g., pesticides, fertilizers, paints, cleaning products, adhesives, electroplating solutions)
  • electric power (e.g., light bulbs, household appliances, energy storage cells, transformers)
  • electronics (e.g., sensors, semiconductors, electrodes, mobile phones, computers)
  • food and beverage (e.g., baked goods, probiotics, preservatives, wine)
  • furniture (e.g., mattresses, sofas, window blinds, light fixtures)
  • leather (e.g., purses, saddles, footwear, bookbinding hides)
  • machinery (e.g., mining augers, air conditioning units, turbines, lathes)
  • materials (e.g., ceramics, cements, glass, nanomaterials)
  • medical equipment and supplies (e.g., ventilators, implants, lab equipment, prosthetics, surgical equipment)
  • metal forming and casting (e.g., steel beams, aluminum ingots, shipping containers, hand tools, wire)
  • paper and printing (e.g., cardboard, sanitary items, stationery, books, bookbinding papers)
  • petrochemical (e.g., solvents, fuel additives, biofuels, lubricants)
  • pharmaceutical and medicine (e.g., antivenom, vaccines, lab-on-a-chip diagnostic tests, cannabis products, nutraceuticals)
  • plastics and rubbers (e.g., dinnerware, tires, storage and shelving, outdoor furniture)
  • textiles (e.g., carpeting, upholstery, bulk fabric, yarn)
  • vehicular and aerospace (e.g., electric vehicles, reusable rocketry, railroad rolling stock, OEM auto parts)
  • wood (e.g., plywood, flooring, lumber, handrails)

If you've ever used a sophisticated two-part epoxy adhesive to repair a pipe crack, used an indoor sun lamp, gotten a lot of mileage out of a pair of leather gloves, received a medical implant, taken a medication, eaten a Twinkie, or ridden on Amtrak, one or more laboratories were involved somewhere in the manufacturing process before using that item. From endless research and testing of prototypes to various phases of quality and safety testing, laboratory science was involved. The importance of the laboratory in manufacturing processes can't be understated.

But what of the history of the manufacturing-focused lab? What of the roles played and testing conducted in them? What do they owe to safety and quality? This chapter more closely examines these questions and more.


1.1 Manufacturing labs, then and now

In 1852, the Putnam's Home Cyclopedia: Hand-Book of the Useful Arts was published as a dictionary-like source of scientific terms. Its definition of a laboratory at that time in U.S. history is revealing (for more on the equipment typically described with a laboratory of that time period, see the full definition)[7]:

Laboratory. The workshop of a chemist. Some laboratories are intended for private research, and some for the manufacture of chemicals on the large scale. Hence it is almost impossible to give a description of the apparatus and disposition of a laboratory which would be generally true of all. A manufacturing laboratory necessarily occupies a large space, while that of the scientific man is necessarily limited to a peculiar line of research. Those who study in organic chemistry have different arrangements than that of the mineral analyst.

This definition highlights the state of laboratories at the time: typically you either had a small private laboratory for experiments in the name of research and development (R&D) and producing prototype solutions, or you had a slightly larger "manufacturing laboratory" that was responsible for the creation of chemicals, reagents, or other substances for a wider customer base.[7][8][9] These laboratory types date back further than the mid-1800s, to be sure, though they also saw great change leading up to and after this time period. This is best characterized by the transition from the humble apothecary lab to the small-scale manufacturing laboratory before the mid-1800s, to the full-scale pharmaceutical manufacturing lab and facility well beyond the mid-1800s.

1.1.1 From apothecary to small-scale manufacturing laboratory

A critical area to examine in relation to the evolution of manufacturing laboratories involves pharmaceuticals and the apothecary, which is steeped in the tradition of making pharmaceutical preparations, as well as prescribing and dispensing them to customers. The idea of an individual who attempted to make medical treatments dates back to at least to 2000 BC, from which Sumerian documents reveal compounding formulas for various medicinal dosage types.[10] By 1540, Swiss physician and chemist Paracelsus made a significant contribution to the early apothecary, influencing "the transformation of pharmacy from a profession based primarily on botanic science to one based on chemical science."[10] Thanks to Paracelsus and other sixteenth century practitioners, the concept of the apothecary became more formalized and chemistry-based in the early seventeenth century. With this formalization came the need for the regulation of apothecaries to better ensure the integrity of the profession. For example, the Master, Wardens and Society of the Art and Mystery of Pharmacopolites of the City of London was founded in 1617 through the Royal Charter of James the First, requiring an aspiring apothecary to conduct an apprenticeship or pay a fee, followed by taking an examination proving the individual's knowledge, skill, and science in the art.[10][11]

However, despite this sort of early regulation, medical practitioners took exception to apothecaries encroaching upon the medical practitioners' own services, and apothecaries took exception to the untrained and uncertified druggists who were still performing the work of pharmacists. (As it turns out, these sorts of recriminations would continue on in some form or another into the beginning of the twenty-first century, discussed later.) But as an 1897 article from The Pharmaceutical Journal portrayed, the apothecaries likely wanted to have their cake and eat it too. "[W]hile the apothecaries urged, in the interest of the public, the desirability of a guarantee for the the competences of every person authorised to practise pharmacy," the journal noted, "they also sought, in their own interest, to extend the scope of their medical practice."[11] This led to further debate and changes over time, including British Parliament declaring medicinal preparations as "very proper objects for taxation" in 1783, while at the same time requiring non-apprenticed apothecaries to apply annually for a license. By this time, most apprenticed apothecaries ceased being perceived as mere pharmacists and more as medical practitioners, though the Society's power of conferring medical qualifications, given to them in 1617, were by this point largely lost.[11]

By the end of the eighteenth century, apothecaries and druggists were setting up their own manufacturing laboratories to make chemical and pharmaceutical products. However, these labs were likely still limited in scope. In 1897, The Pharmaceutical Journal portrayed manufacturing labs as such, in the scope of the growing Plough Court Pharmacy run by William Allen and Luke Howard[11]:

It is, however, difficult to at the present time to realise what must have been the position of a manufacturing chemist in 1797, or to comprehend, without some reflection, how limited was the range of his operations and how much his work was beset with difficulties which are now scarecely conceivable. At that time chemical industry was confined to the production of soap, the mineral acids, and some saline compounds then used in medicine. Among the latter, mercurial preperations held an important place, and some of these appear to have first received attention by the firm of Allen and Howard. The early laboratory account books of the firm mention ammoniacals, caustic potash, borax, argentic nitrate, and cream of tartar, as well as ether, benzoic acid, and refine camphor, which were then articles of the materia medics, citric, tartatic and oxalic acids, etc.

To be sure, other types of manufacturing were occurring during the rise and dominance of the apothecary, not just pharmaceutical manufacture. But, retrospectively, the pharmaceutical manufacturing lab in general was likely not in the best of shape as the nineteenth century approached. With several changes in Europe and United States in the early 1800s, the apothecary's manufacturing lab arguably saw more formalized and regulated activity, through various releases of pharmacopoeias[10][12], openings of new pharmacy schools (though still limited in scope)[13], publishing of books[13], and additional formalization of regulating legislation (such as Britain's Apothecaries Act of 1815).[11] By the time the United States Pharmacopeia came upon the scene in 1820, the apothecary was viewed as "competent at collecting and identifying botanic drugs and preparing from them the mixtures and preparations required by the physician."[10] Pharmaceutical historian Loyd Allen, Jr. refers to this time period as "a time that would never be seen again," a sort of Golden Age of the apothecary, given the increasingly rapid rate that scientific and technological discoveries were being made soon after, particularly in synthetic organic chemistry.[10]

Of course, the manufacturing lab—pharmaceutical and otherwise—had other issues as well. For example, just because a small-scale experimental R&D process yielded a positive result didn't mean that process was scalable to large-scale manufacturing. "Frequently, things work well on a small scale, and failure results when mass action comes into effect," noted Armour Fertilizer Company's president Charles McDowell in April 1917, while discussing American research methods.[14] Sometimes a process was sufficiently simple that switching to more robust and appropriate apparatuses was all that was needed to scale up from experiment to full production.[15] In other cases, a full-scale manufacturing laboratory process had yet to be developed, let alone the experiments conducted to develop a proof-of-concept solution in the experimental lab.[16]

Another challenge the manufacturing lab had was in ensuring the stability of any laboratory manufactured solution. Discussing the British Pharmacopoeia-introduced substance of sulphurous acid for afflictions of the throat, Fellow of the Chemical Society Charles Umney noted the stability considerations of the substance when made in the manufacturing laboratory[17]:

Now the Pharmacopoeia solution (which is about 37 volumes) was designedly made nearly one of saturation at the average summer temperature of this country, and, if one may be excused for making a guess, we described from calculations made from the above data of Bunsen's, and not practically worked out to see whether such a solution could be ordinarily obtained in the manufacturing laboratory without chance of failure, and, when made, be kept without great alteration in the various stages it would have to pass through, even if only from the manufacturer to the wholesale druggist, then to the pharmacists, in whose store it might retain for a year or more, being perhaps placed in a temperature many degrees above the point at which it was saturated, thereby causing expansion, liberation of gas, and inconvenience.

Difficulties aside, as the 1800s progressed, the resources of a collaboratory manufacturing laboratory were often greater than those of the individual private laboratory, with enterprising businesses increasingly turning to larger labs for greater and more high-quality quantities of materials. For example, in a letter from the Royal Institution of Great Britain, editor William Crookes discussed the discovery of thallium, noting that the manufacturing lab of noted manufacturing chemists Hopkin and Williams were able to prepare chloride of thallium for him from two hundredweight (cwt) in less time than it took Crookes to make 10 pounds of sulfur in his private laboratory.[18] This trend would continue into the late 1800s, for pharmaceutical and other manufactured goods.

1.1.2 From small-scale private manufacturing lab to larger-scale industrial manufacturing lab

By the 1860s, numerous changes to the paradigm of the manufacturing lab were beginning to take shape, with noticeable momentum away from the small-scale private manufacturing labs to those larger in scope and output, putting competitive pressures on the smaller manufacturing labs.[19] Take, for example, one of the largest U.S.-based enameled brick factories for its time, in 1896, which "[i]n addition to their manufacturing laboratory for slips, enamels and glazes, they maintain an analytical chemical laboratory, and have two chemists in their employ."[20] Ten years prior, a report on the visit to the experimental and manufacturing laboratories of Louis Pasteur highlights the need for a more sizeable facility for meeting demand for the anthrax vaccine[21]:

To meet the demands upon the laboratory work for the supply of anthrax vaccine, the preparation of this is now carried out in an establishment apart from the experimental laboratory in connection with the Ecole Normale, where it was originally started. In the Rue Vaquelin, under the charge of educated assistants, M. Chamberland carries out the preparation on a large scale—the necessity for this being apparent when regard is had to the statement of the quantity demanded for France and other countries.

The author, William Robertson, then goes into greater detail of the many rooms and floors of the building housing the manufacturing laboratory and its apparatuses, highlighting the grandness of the lab's efforts.

The change from small-scale private to larger-scale industrial manufacturing labs—in turn seemingly being supplanted by analytical laboratories[22]—is arguably best seen in the transition from the apothecary and pharmacist to the large-scale pharmaceutical manufacturer. During this time of change in the late 1800s, laws dictating higher manufacturing quality, educational requirements, and restrictions on who can sell medicines were derided, debated, or cheered, depending on who was involved.[23][24]

Reading for a meeting at the Kings County Pharmaceutical Society of Ohio, Charles E. Parker had the following to say about the state of the apothecary-turned-pharmacist in 1896, which fully highlights the transition from small-scale private to larger-scale industrial manufacturing of pharmaceuticals[24]:

The modern pharmacist succeeds to all the responsibilities and obligations of the ancient apothecary without opposition, but his utmost efforts have not preserved to him his inheritance of former privileges and emoluments ... Technical skill is of no use to the professional side of pharmacy unless it is used, and used for the public welfare as well as that of its possessor. The dispenser is the typical pharmacist. But where in former years his sphere included many activities and much manipulative expertness in the preparation of drugs, and even the production of many of them, the midern tendancy is for him to become a mere compounder and dispenser. Of course he is expected to know how, but actually is seldom required to perform the operations once a matter of constant routine. Step by step the productive processes of his little laboratory have been transferred to the works of large manufacturers. Year by year the pharmaceutical improvements and useful inventions which would once have conferred reputation and profit upon the dispensing pharmacies where they originated, have found a better market through these same manufacturers ... In addition, it is to be considered that some of the requisites of modern pharmacy are of a nature involving the use of expensive machinery and large plant, which places their production quite beyond the reach of the pharmacy.

Writing for the Pharmaceutical Review in 1897, editor Dr. Edward Kremers penned an editorial on the role of the manufacturing laboratory in the growing pharmaceutical industry, noting that "[d]uring the past hundred years a most remarkable industrial revolution has taken place," and that pharmacy was also victim to that, lamenting that the apothecaries of the beginning of the century—along with the druggists of 1897—had largely become "relics of the past."[25] Kremers also touched upon another complaint popular at the time: that of pharmacy as a money-making venture.[22][25] In his editorial, Kremers says:

It is a hope cherished by some that higher education will revolutionize pharmacy of today and lift her out of her present unenviable situation. The manufacturing industries, however, have revolutionized pharmacy of fifty years ago and are to no small extent coresponsible for the present state of affairs. The pharmaceutical profession as a whole is justified in asking what a particular branch is doing for the general good. Is the pharmaceutical manufacturer in the erection of his buildings, in the equipment of his laboratories and in the selection of his working force simply bent upon making so many thousands of dollars a paying investment, viewed from a merely commercial standpoint, or are his doings influenced to some extent to at least by higher than purely necessary motives.

By the early years of 1900, recognition of the sea-level change to the apothecary, pharmacist, and manufacturing laboratory had arguably gained traction, and by 1920 it was largely accepted[26]. Writing for The Rocky Mountain Druggist in 1908, pharmaceutical doctor Geo H. Meeker laid it out in no uncertain terms:

Large manufacturing establishments can, for the most part, furnish the druggist at lower prices, with better authentic goods than he himself could produce, assay and guarantee. The inevitable result is that the druggist of today purchases finished products rather than raw materials as did the apothecary of yesterday. It is obvious that a large manufacturing establishment, conducted on ethical lines, employing a complete corps of specialists, buying raw materials to the best advantage and by assay only, making preparations on a large and intelligent technical scale and testing and assying the finished products, does a work that is too immense in its scope for the individual apothecary ... Our present remnant of the drug store laboratory is, as in the past, essentially a manufacturing laboratory. It is of limited and rapidly vanishing scope because the small local laboratory man cannot successfully compete with his rivals, the great and highly-organized factories.

Similar comments were being made by Pearson in 1911[19], Thiesing in 1915[27], and Beal in 1919.[26] Beal in particular spoke solemnly of the transition, largely complete by the time of his acceptance of the Joseph P. Remington Honor Medal in 1919. Speaking of Remington and his experiences in pharmacy, until his death in 1918, Beal said[26]:

Professor Remington's professional experience bridged the space between two distinct periods of pharmaceutical development. When he began his apprenticeship the apothecary, as he was then commonly called, was the principal manufacturer as well as the purveyor of medical supplies ... He lived to see the period when the apothecary ceased to be the principal producer of medicinal compounds and became mainly the purveyor of preparations manufactured by others, and when the medicinal agents in most common use assumed a character that required for the successful production the resources of establishments maintained by large aggregations of capital and employing large numbers of specially trained workers. To those who knew him intimately it was evident that although Professor Remington did not welcome the passing of the manufacturing functions of the apothecary to the large laboratory, he at length came to realize that such a change was inevitable, that it was but a natural step in the process of social evolution, and that the logical action of the apothecary was not to resist that which he could neither prevent nor change, but to readjust himself to the new conditions.

Of course, by then, the rise of the industrial research lab within large-scale manufacturing enterprises was in full swing.

1.1.3 The rise of the industrial research lab within large-scale manufacturing, and today's manufacturing landscape

Like the small, privately owned manufacturing labs evolving to large-scale company-run manufacturing labs, so did the research processes of prior days. The individual tinkering with research in their private laboratory and making small batches of product gave way to a collective of individuals with more specialized talents cooperatively working in a large industrial manufacturing center towards a common, often complex research goal, i.e., within the industrial research laboratory.[28][29] Those larger manufacturing entities that didn't have an industrial research lab were beginning to assess the value of adding one, while smaller enterprises that didn't have the resources to support an extensive collection of manufacturing and research labs were increasingly joining forces "to maintain laboratories doing work for the whole industry."[28]

But what drove the advance of the industrial research lab? As the National Research Council pointed out in 1940, "individuals working independently could not, for very long, provide the technical and scientific knowledge essential to a rapidly developing industrial nation."[30] Newly emerging industries had a need for new knowledge to feed their growth, and they proved to be the early adopters of establishing separate research departments or divisions in their businesses, unlike businesses in long-established industries. The First World War was also responsible for driving organized research efforts in various industries to solve not only wartime problems but also plant the seed of development in peacetime industries. By 1920, two-thirds of all research workers surveyed by the National Research Council were employed in the emerging electrical, chemical, and rubber industries, though the overall adoption of industrial research approaches was still limited across all companies.[30]

In 1917, the previously mentioned Charles McDowell presented his view of American research and manufacturing methods of his time, referring to research as "diligent inquiry."[14] In his work, McDowell stated three types of research that leads up to the manufacturing process: pure scientific inquiry, industrial research, and factory research. He noted that of pure scientific inquiry, little thought is typically given to whether the research—often conducted by university professors—will have any real commercial value, though such value is able to emerge from this fundamental research. As for factory research, McDowell characterized it as full-scale factory-level operations that range from haphazard approaches to well-calculated contingency planning, all of which could make or break the manufacturing business.

In regards to the middle category of industrial research, McDowell made several observations that aptly described the state of manufacturing research in the early 1900s. He noted that unlike pure scientific inquiry, industrial research had commercial practicality as a goal, often beginning with small-scale experiments while later seeking how to reproduce those theoretical results into large-scale manufacturing. He also reiterated his point about needing to "have good backing" financially. "The larger manufacturer maintains his own staff and equipment to carry out investigations along any line that may seem desirable," he said, "but the smaller industries are not able to support an establishment and must rely on either consulting engineers or turn their problems over to some equipped public or private laboratory to solve."[14]

In his 1920 book The Organization of Industrial Scientific Research, Mees presented these three types of research somewhat similarly, though in the context of the industrial laboratory and its operations. Mees argued that industrial laboratories could be classified into three divisions[28]:

  • Laboratories "working on pure theory and the fundamental sciences associated with the industry," aligning in part with McDowell's "pure scientific inquiry";
  • Work laboratories "exerting analytical control over materials, processes and product," aligning slightly with McDowell's "factory research" but more akin to the modern quality control lab; and
  • Industrial laboratories "working on improvements in product and in processes," aligning with McDowell's "industrial research."

Mees argued in particular that those industrial research laboratories that simply improve products and processes were not doing enough; they should, necessarily, also direct some of their goals towards more fully understanding the fundamental and underlying theory of the topic of research.[28] In other words, Mees suggested that those labs simply working on theoretical and fundamental science research, as well as those labs conducting industrial research to improve products and processes, shouldn't necessarily function in separate vacuums. "Research work of this fundamental kind involves a laboratory very different from the usual works laboratory and also investigators of a different type from those employed in a purely industrial laboratory," he noted. Of course, this hybrid approach to fundamental and industrial research was largely reserved for the largest of manufacturers, and solutions were needed for smaller manufacturing endeavors. Here, like McDowell in 1917, Mees argued for smaller businesses with limited resources adopting both cooperative laboratory (those businesses that pool resources together for a fully supported research laboratory) and consulting laboratory (a third-party lab with the resources to fully study a problem, undertake investigations, model a manufacturing process, and implement that process into its client's factory, all for a fee) approaches.[28] With such solutions, the industrial research laboratory continued to take on a new level of complexity to address emerging industry needs, far from the humble origins of an early nineteenth-century manufacturing laboratory.

This growth or industrial research would continue onward from the twentieth century into the twenty-first century. In 1921, some 15 companies maintained research groups of more than 50 people; by 1938, there were 120 such businesses.[30] By the 1990s, "the share of funding for basic research provided by industry actually grew from 10 percent to 25 percent of the national total, even though basic research accounted for just 5-7 percent of total R&D expenditures by industry."[31] This trend of large research groups continues today, though with the recognition that smaller teams may still have advantages. In a 2019 article in the Harvard Business Review, Wang and Evans recognize "large teams as optimal engines for tomorrow’s largest advances," while smaller research teams are better poised to ask disruptive questions and make innovative discoveries.[32]


1.2 Laboratory roles and activities in the industry

Today, the "manufacturing laboratory" is a complex entity that goes beyond the general idea of a lab making or researching things. Many of the historical aspects discussed prior still hold today, but other aspects have changed. As indicated in the introduction, the world of manufacturing encompasses a wide swath of industries and sub-industries, each with their own nuances. Given the nuances of pharmaceutical manufacturing, food and beverage development, petrochemical extraction and use, and other industries, it's difficult to make broad statements about manufacturing laboratories in general. However, the rest of this guide will attempt to do just that, while at times pointing out a few of those nuances found in specific industries.

The biggest area of commonality is found, unsurprisingly, in the roles manufacturing-based labs play today, as well as the types of lab activities they're conducting within those roles. These roles prove to be important in the greater scheme of industry activities, in turn providing a number of benefits to society. As gleaned from prior discussion, as well as other sources, these laboratory roles can be broadly broken into three categories: research and development (R&D), pre-manufacturing and manufacturing, and post-production regulation and security. Additionally, each of these categories has its own types of laboratory activities.

The scientific disciplines that go into these laboratory roles and activities is as diverse as the manufacturing industries and sub-industries that make up the manufacturing world. For example, the food and beverage laboratory taps into disciplines such as biochemistry, biotechnology, chemical engineering, chemistry, fermentation science, materials science, microbiology, molecular gastronomy, and nutrition.[33][34][35][36] However, the paper and printing industry taps into disciplines such as biochemistry, biology, chemistry, environmental science, engineering, forestry, and physics.[37][38] By extension, the reader can imagine that these and other industries also have a wide variety of laboratory techniques associated with their R&D, manufacturing, and post-production activities.

The following subsections more closely examine the three roles manufacturing-based labs can play, as well as a few examples of lab-related activities found within those roles.

1.2.1 R&D roles and activities

The National Institute of Standards and Technology (NIST) and its Technology Partnerships Office offer a detailed definition of manufacturing-related R&D as an activity "aimed at increasing the competitive capability of manufacturing concerns," and that "encompasses improvements in existing methods or processes, or wholly new processes, machines or system."[39] They break this down into four different technology levels[39]:

  • Unit process-level technologies that create or improve manufacturing processes,
  • Machine-level technologies that create or improve manufacturing equipment,
  • Systems-level technologies for innovation in the manufacturing enterprise, and
  • Environment- or societal-level technologies that improve workforce abilities and manufacturing competitiveness.

Obviously, this definition applies to actual development of and innovation towards methods of improving and streamlining manufacturing processes. However, this same concept can, in part, can be applied to the actual products made in a manufacturing plant. Not only does product-based R&D focus on improving "existing methods and processes," but it also focuses on "manufacturing competitiveness" by developing new and innovating existing products that meet end users' needs. Laboratories play an manufacturing-based R&D laboratories play an important role in this regard.

The laboratory participating in this role is performing one or more tasks that relate to the development or improvement of a manufactured good. This often leads to a commercial formulation, process, or promising insight into a product. The R&D lab may appear outside the manufacturing facility proper, but not necessarily always. Some manufacturing companies may have an entire research complex dedicated to creating and improving some aspect of their products.[40] Other companies may take their R&D to a third-party consulting lab dedicated to conducting development and formulation activities for manufacturers.[41][42] Industrial research activities aren't confined to manufacturers, however. Some higher education institutions provide laboratory-based research and development opportunities to students engaging in work-study programs, often in partnership with some other commercial enterprise.[43]

The following types of lab-related activities may be associated with the R&D role:

Overall product development and innovation: Jain et al. noted in their book on managing R&D activities that in 2010, 60 percent of U.S. R&D was focused on product development, while 22 percent focused on applied research and 18 percent on basic research. However, they also argue that any R&D lab worth its weight should have a mix of these activities, while also including customer participation in the needs assessment and innovation activities that take place in product development and other research activities. Jain et al. define a manufacturer's innovation activities as "combining understanding and invention in the form of socially useful and affordable products and processes."[44] As the definition denotes, newly developed products ("offerings") and processes (usually which improve some level of efficiency and effectiveness) come out of innovation activities. Additionally, platforms that turn existing components or building blocks into a new derivative offering (e.g., a new model or "generation" of product), as well as "solutions that solve end-to-end customer problems," can be derived from innovation. Those activities can focus on more risky radical innovation to a new product or take a more cautious incremental approach to improvements on existing products.[45]

Reformulation: Reformulation involves the material substitution of one or more raw materials used in the production of a product to accomplish some stated goal. That goal may be anything from reducing the toxicity or volume of wastes generated[46][47][48] and improving the overall healthiness of the product[49][50], to transitioning from traditional holistic medicine approaches to more modern biomedical approaches.[51] Examples of products that have seen reformulation by manufacturers include:

  • Paints and other coatings[46],
  • Fuels such as gasoline[48],
  • Foods and beverages[49][50], and
  • Pharmaceuticals and cosmetics.[47][51]

In the end, reformulation is a means for improving impacts on the end user, the environment, or even the long-term budget of the manufacturer. The type of lab activities associated with reformulation largely varies by product; the laboratory methods used to reformulate gasoline may be quite different from those in a food and beverage lab. Reformulation can also be a complicated process, as found with pharmaceutical products. The reformulated product "must have the same therapeutic effect, stability, and purity profile" as the original, while maintaining pleasing aesthetic qualities to the end user. Adding to the problem is regulatory approval times of such pharmaceutical reformulations.[47]

Nondestructive testing and materials characterization: Raj et al. describe nondestructive testing (NDT) as "techniques that are based on the application of physical principles employed for the purpose of determining the characteristics of materials or components or systems and for detecting and assessing the inhomogeneities and harmful defects without impairing the usefulness of such materials or components or systems."[52] NDT has many applications, including with food, steel, petroleum, medical devices, transportation, and utilities manufacturing, as well as electronics manufacturing.[53][54][55] It also plays an important role in materials testing and characterization.[56] NDT and materials testing is often used as a quality control mechanism during manufacturing (see the next subsection), but it can also be used during the initial R&D process to determine if a prototype is functioning as intended or a material is satisfactory for a given application.[52]

Stability, cycle, and challenge testing: Multiple deteriorative catalysts can influence the shelf life of a manufactured product, from microbiological contaminants and chemical deterioration to storage conditions and the packaging itself. As such, there are multiple approaches to taming the effects of those catalysts, from introducing additives to improving the packaging.[57] However, stability, cycle, and challenge testing must be conducted on many products to determine what deleterious factors are in play. The analytical techniques applied in stability, cycle, and challenge testing will vary based on, to a large degree, the product matrix and its chemical composition.[57] Microbiological testing is sure to be involved, particularly in challenge testing, which simulates what could happen to a product if contaminated by a microorganism and placed in a representative storage condition.[58][59] Calorimetry, spectrophotometry, spectroscopy, and hyperspectral imaging may be used to properly assess color, particularly when gauging food quality.[57] Other test types that may be used include water content, texture, viscosity, dispersibility, glass transition, and gas chromatography.[57] In the end, the substrate being examined will be a major determiner of what kind of lab methods are used. The lab method chosen for stability, cycle, and challenge testing should optimally be one that errs on the side of caution and is appropriate to the test, even if it takes longer. As Chen notes: "A longer test cycle is less a concern for stability protocol as the study typically has a limited number of samples. Applying a less reliable method to the limited number of samples in a stability study can be problematic."[59]

Packaging analysis and extractable and leachable testing: Materials that contact pharmaceuticals, foods and beverages, cosmetics, and more receive special regulatory consideration in various parts of the world. This includes alloys, bioplastics, can coatings, glass, metals, regenerated cellulose materials, paper, paperboard, plastics, printing inks, rubber, textiles, waxes, and woods.[60] As such, meeting regulatory requirements and making inroads with packaging development can be a complicated process. Concerns of chemicals and elements that can be extracted or leach into sensitive products add another layer of complexity to developing and choosing packaging materials for many manufactured goods. This requires extractable and leachable testing at various phases of product development to ensure the packaging selected during formulation is safe and effective.[59][61] Extractable and leachable testing for packaging could involve a number of techniques ranging from gas and liquid chromatography to ion chromatography and inductively coupled plasma mass spectrometry.[62]

1.2.2 Pre-manufacturing and manufacturing roles and activities

The laboratory participating in these roles is performing one or more tasks that relate to the preparative (i.e., pre-manufacturing) or quality control (QC; i.e., manufacturing) activities of production. An example of preparative work is conducting allergen, calorie, and nutrition testing for a formulated food and beverage product. Calorie and nutrition testing—conducted in part as a means of meeting regulation-driven labeling requirements—lands firmly in the role of pre-manufacturing activity, most certainly after commercial formulation and packing requirements have been finalized but before the formal manufacturing process has begun.[63] Allergen testing works in a similar fashion, though the manufacturer ideally uses a full set of best practices for food allergen management and testing, from confirming allergens (and correct labeling) from ingredients ordered to performing final production line cleanup (e.g., when a new allergen-free commercial formulation is being made or an unintended contamination has occurred).[64] These types of pre-production analyses aren't uncommon to other types of manufacturing, discussed below.

As for in-process manufacturing QC, some QC and quality assurance (QA) methods may already be built into the manufacturing process in-line, not requiring a lab. For example, poka-yokes—mechanisms that inhibit, correct, or highlight errors as they occur, as close to the source as possible—may be built in-line to a manufacturing process to prevent a process from continuing should a detectable error occur, or until a certain condition has been reached.[65][66] However, despite the value of inline QC/QA, these activities also happen beyond the production line, in the laboratory (discussed further, below).

The following types of lab-related activities may be associated with the pre-manufacturing and manufacturing role:

Various pre-manufacturing analyses: Also known as pre-production, some level of laboratory activity takes place here. Like the previously mentioned food and beverage industry, the garment manufacturing industry will have its own laboratory-based pre-production activities, including testing various raw material samples for potential use and quality testing pre-production samples before deciding to go into full production.[67] In another example, a manufacturer intending to produce "a new chemical substance for a non-exempt commercial purpose" in the U.S. must submit a pre-manufacture notice to the Environmental Protection Agency (EPA), which must include "test data on the effect to human health or the environment."[68]

Quality control testing: While QC testing can appear in multiple manufacturing laboratory roles, it's most noticeable in the pre-manufacturing and manufacturing role. Manufacturers in many industries have set up formal testing laboratories to better ensure that their products conform to a determined set of accepted standards, whether those standards come from a standards-setting organization


NDT and materials testing, discussed in the prior subsection about R&D, can also occur during the various phases of manufacturing, as part of an overall quality control effort.[52]

1.2.3 Post-production regulation and security roles and activities

The laboratory participating in these roles is performing one or more tasks that relate to the post-production examination of products for regulatory, security, or accreditation purposes. Labs are often third parties accrediting a producer to a set of standards, ensuring regulatory compliance, conducting authenticity and adulteration testing, conducting security checks at borders, and applying contamination testing as part of an overall effort to track down contamination sources. In addition to ensuring a safer product, society also benefits from these and similar labs by better holding producers legally accountable for their production methods and obligations.

The following types of lab-related activities may be associated with the post-production regulation and security role:

Authenticity and adulteration testing:

Accreditation-led testing:

References

  1. Carr, T.; Chewning, E.; Doheny, M. et al. (29 August 2022). "Delivering the US manufacturing renaissance". McKinsey & Company. https://www.mckinsey.com/capabilities/operations/our-insights/delivering-the-us-manufacturing-renaissance. Retrieved 24 March 2023. 
  2. Ischi, H. P.; Radvila, P. R. (17 January 1997). "Accreditation and quality assurance in Swiss chemical laboratories". Accreditation and Quality Assurance 2 (1): 36–39. doi:10.1007/s007690050092. ISSN 0949-1775. http://link.springer.com/10.1007/s007690050092. 
  3. Crow, Michael M.; Bozeman, Barry (1998). "Chapter 1: The Sixteen Thousand: Policy Analysis, R&D Laboratories, and the National Innovation System". Limited by design: R&D laboratories in the U.S. national innovation system. New York: Columbia University Press. pp. 1–40. ISBN 978-0-585-04137-7. https://books.google.com/books?hl=en&lr=&id=OVPZvqz2e6UC. 
  4. Grochau, Inês Hexsel; ten Caten, Carla Schwengber (1 October 2012). "A process approach to ISO/IEC 17025 in the implementation of a quality management system in testing laboratories" (in en). Accreditation and Quality Assurance 17 (5): 519–527. doi:10.1007/s00769-012-0905-3. ISSN 0949-1775. http://link.springer.com/10.1007/s00769-012-0905-3. 
  5. Ribeiro, À.S.; Gust, J.; Vilhena, A. et al. (2019). "The role of laboratories in the international development of accreditation". Proceedings of the 16th IMEKO TC10 Conference "Testing, Diagnostics & Inspection as a comprehensive value chain for Quality & Safety": 56–9. https://www.imeko.info/index.php/proceedings/7687-the-role-of-laboratories-in-the-international-development-of-accreditation. 
  6. "Manufacturing: NAICS 31-33". Industries at a Glance. U.S. Bureau of Labor Statistics. 24 March 2023. https://www.bls.gov/iag/tgs/iag31-33.htm. Retrieved 24 March 2023. 
  7. 7.0 7.1 Antisell, T. (1852). Putnam's Home Cyclopedia: Hand-Book of the Useful Arts. 3. George P. Putnam. pp. 284-5. https://books.google.com/books?id=vsI0AAAAMAAJ&pg=PA284. Retrieved 31 March 2023. 
  8. Porter, A.L. (1830). "Chemistry Applied to the Arts". The Chemistry of the Arts; being a Practical Display of the Arts and Manufactures which Depend on Chemical Principles. Carey & Lea. pp. 17–18. https://books.google.com/books?id=zy8aAAAAYAAJ&pg=PA17&dq=manufacturing+laboratory. Retrieved 06 April 2023. "The larger laboratories, or workshops, which are used only in particular branches of business, and the necessary apparatus attached to them, will be considered under the several substances which are prepared in them. Besides the workshop, every operative chemist ought to devote some part of his premises as a small general elaboratory, fitted up with some furnaces and other apparatus as may enable him to make any experiment seemingly applicable to the improvement of his manufacturing process without loss of time, and immediately upon its inception." 
  9. Marsh, G. P. (1846). Speech of Mr. Marsh, of Vermont, on the Hill for Establishing the Smithsonian Institution, Delivered in The House of Representatives of the U. States, April 22, 1846. J. & G.S. Gideon. p. 11. https://books.google.com/books?id=ptg-AAAAYAAJ&pg=PA11&dq=manufacturing+laboratory. Retrieved 06 April 2023. "How are new substances formed, or the stock of a given substance increased, by the chemistry of nature or of art? By new combinations or decompositions of known and pre-existing elements. The products of the experimental or manufacturing laboratory are no new creations; but their elements are first extracted by the decomposition of old components, and then recombined in new forms." 
  10. 10.0 10.1 10.2 10.3 10.4 10.5 Allen Jr., L.V. (2011). "A History of Pharmaceutical Compounding" (PDF). Secundum Artem 11 (3). Archived from the original on 28 January 2013. https://web.archive.org/web/20130128014521/https://www.perrigo.com/business/pdfs/Sec%20Artem%2011.3.pdf. Retrieved 06 April 2023. 
  11. 11.0 11.1 11.2 11.3 11.4 "The Plough Court Pharmacy". The Pharmaceutical Journal (Pharmaceutical Society of Great Britain) LVIII: 164–7, 247–51. January to June 1897. https://www.google.com/books/edition/Pharmaceutical_Journal/ScDyXwC8McwC?hl=en&gbpv=1&dq=manufacturing+laboratory&pg=PA164&printsec=frontcover. Retrieved 06 April 2023. 
  12. Anderson, S.C. (2013). "Pharmacopoeias of Great Britain" (PDF). A History of the Pharmacopoeias of the World. International Society for the History of Pharmacy. pp. 1–8. http://www.histpharm.org/ISHPWG%20UK.pdf. Retrieved 06 April 2023. 
  13. 13.0 13.1 "The Early Days of Pharmaceutical". The Druggists Circular LXII (6): 244–5. June 1918. https://books.google.com/books?id=P3kgAQAAMAAJ&pg=RA2-PA243-IA1&dq=manufacturing+laboratory. Retrieved 06 April 2023. 
  14. 14.0 14.1 14.2 McDowell, C.A. (1917). "American Research Methods". Journal of the Western Society of Engineers XXII (8): 546–65. https://books.google.com/books?id=8pMPAQAAIAAJ&pg=PA546&dq=manufacturing+laboratory. Retrieved 06 April 2023. 
  15. Robertson, J.C., ed. (1 July 1843). "Desulphuration of Metals". Mechanics' Magazine, Museum, Register, Journal, and Gazette 38: 444. https://books.google.com/books?id=3u01AQAAMAAJ&pg=RA1-PA444&dq=manufacturing+laboratory. Retrieved 06 April 2023. 
  16. Jackson, C.T. (31 May 1843). "Chemical Salts as Fertilizers". New England Farmer, and Horticultural Register (Joseph Breck & Co) XXL (48): 379. https://books.google.com/books?id=hrYxAQAAMAAJ&pg=PA379&dq=manufacturing+laboratory. Retrieved 06 April 2023. 
  17. Umney, C. (1869). "Sulphurous Acid". Pharmaceutical Journal and Transactions (John Churchill and Sons) X (IX): 516–20. https://books.google.com/books?id=POkKAAAAYAAJ&pg=PA516&dq=manufacturing+laboratory. Retrieved 06 April 2023. 
  18. Crookes, W. (April 1863). "On the Discovery of the Metal Thallium". The Chemical News and Journal of Physical Chemistry VII (175): 172–6. https://books.google.com/books?id=0JHOIc5pHYwC&pg=PA172&dq=manufacturing+laboratory. Retrieved 06 April 2023. 
  19. 19.0 19.1 Pearson, W.A. (April 1911). "The Preparation and Testing of Drugs". The Journal of the Franklin Institute of the State of Pennsylvania CLXXI (4): 415–21. https://books.google.com/books?id=GyFFAQAAMAAJ&pg=PA415&dq=manufacturing+laboratory. Retrieved 12 April 2023. "All the large drug laboratories have been developed since 1860 ... The increase in number of manufacturing laboratories and the consequent increase in competition exerted an influence on the wholesale druggist." 
  20. Lockington, W.P. (April 1896). "Enamled Brick at Oaks, PA". The Clay-Worker XXV (4): 350–51. https://books.google.com/books?id=lj9PAQAAIAAJ&pg=RA1-PA350&dq=manufacturing+laboratory. Retrieved 07 April 2023. 
  21. Robertson, W. (1886). "Report of Visit to the Laboratories of M. Pasteur at Paris". The Veterinary Journal and Annals of Comparative Pathology XXIII: 223–7. https://books.google.com/books?id=a-AfAQAAIAAJ&pg=PA223&dq=manufacturing+laboratory. Retrieved 07 April 2023. 
  22. 22.0 22.1 The Western Druggist (July 1902). "Drug Clerks and Labor Unions". The Western Druggist XXIV (7): 405. https://books.google.com/books?id=qG8gAQAAMAAJ&pg=PA405&dq=manufacturing+laboratory. Retrieved 12 April 2023. 
  23. Lilly, J.K. (January 1883). "The Relation of Manufacturing Pharmacists to Pharmacy Laws". The Pharmacist and Chemist XVI (1): 258–9. https://books.google.com/books?id=VlyFy6zJQpUC&pg=RA2-PA258&dq=manufacturing+laboratory. Retrieved 06 April 2023. 
  24. 24.0 24.1 Parker, C.E. (25 March 1896). "Some Aspects of Technical Pharmacy". American Druggist and Pharmaceutical Record XXVIII (6): 183–4. https://books.google.com/books?id=bSnnAAAAMAAJ&pg=PA183&dq=manufacturing+laboratory. Retrieved 12 April 2023. 
  25. 25.0 25.1 Kremers, E. (April 1897). "The Manufacturing Laboratory in the Household of Pharmacy". Pharmaceutical Review 15 (4): 61–7. https://books.google.com/books?id=4BU4AQAAMAAJ&pg=PA61&dq=manufacturing+laboratory. Retrieved 12 April 2023. 
  26. 26.0 26.1 26.2 Diner, J.; Beal, J.H. (December 1919). "Award of the Joseph B. Remington Honor Medal". The Midland Druggist and Pharmaceutical Review LIII (12): 475–9. https://books.google.com/books?id=GQlOAAAAMAAJ&pg=PA475&dq=manufacturing+laboratory. Retrieved 12 April 2023. 
  27. Thiesing, E.H. (October 1915). "Proceedings of the Joint Session of the Commercial Section and Section on Education and Legislation - Chairman Thiesing's Address". The Journal of the Americam Pharmaceutical Association IV (10). https://books.google.com/books?id=b_5EAQAAMAAJ&pg=PA1203&dq=manufacturing+laboratory. Retrieved 12 April 2023. 
  28. 28.0 28.1 28.2 28.3 28.4 Mees, C.E.K. (1920). "Chapter 1: Introduction". The Organization of Industrial Scientific Research. McGraw-Hill Book Company, Inc. pp. 4–10. https://books.google.com/books?id=rDIuAAAAYAAJ&printsec=frontcover&dq=industrial+research+laboratories. Retrieved 12 April 2023. 
  29. Boyd, T.A. (May 1938). "Putting Research to Work". A.E.C. Bulletin - Invention and The Engineer's Relation to It (American Engineering Council): 22–9. https://books.google.com/books?id=lYkiAQAAMAAJ&pg=RA23-PA22&dq=industrial+research+laboratories. Retrieved 12 April 2023. 
  30. 30.0 30.1 30.2 National Research Council (December 1940). Research—A National Resource, II—Industrial Research. United States Government Printing Office. https://nap.nationalacademies.org/read/20233/chapter/4#34. Retrieved 13 April 2023. 
  31. Usselman, S.W. (11 November 2013). "Research and Development in the United States since 1900: An Interpretive History". Yale University. https://economics.yale.edu/sites/default/files/usselman_paper.pdf. Retrieved 13 April 2023. 
  32. "Research: When Small Teams Are Better Than Big Ones". Harvard Business Review. 21 February 2019. https://hbr.org/2019/02/research-when-small-teams-are-better-than-big-ones. Retrieved 13 April 2023. 
  33. Nollet, L.M.L.; Toldrá, F., ed. (2015). Handbook of Food Analysis (Two Volume Set) (3rd ed.). CRC Press. pp. 1568. ISBN 9781482297843. https://books.google.com/books?id=KtAdCgAAQBAJ&printsec=frontcover. 
  34. Nielsen, S. (2015). Food Analysis Laboratory Manual (2nd ed.). Springer. pp. 177. ISBN 9781441914620. https://books.google.com/books?id=i5TdyXBiwRsC&printsec=frontcover. 
  35. Douglas, S.E. (July 2022). "Labs by industry: Part 2". The Laboratories of Our Lives: Labs, Labs Everywhere! (2nd ed.). LIMSwiki. https://www.limswiki.org/index.php/LII:The_Laboratories_of_Our_Lives:_Labs,_Labs_Everywhere!/Labs_by_industry:_Part_2. Retrieved 13 April 2023. 
  36. Bhandari, B.; Roos, Y.H. (2012). "Chapter 1: Food Materials Science and Engineering: An Overview". In Bhandari, Bhesh; Roos, Yrjö H.. Food Materials Science and Engineering. Chichester, West Sussex, UK ; Ames, Iowa: Wiley-Blackwell. pp. 1–25. ISBN 978-1-4051-9922-3. 
  37. Bajpai, P. (2010). "Chapter 2: Overview of Pulp and Papermaking Processes". Environmentally Friendly Production of Pulp and Paper. John Wiley & Sons. pp. 8–45. ISBN 9780470528105. https://books.google.com/books?id=zjEeUpwepFMC&printsec=frontcover. Retrieved 13 April 2023. 
  38. Nykänen, Panu (2018), Särkkä, Timo; Gutiérrez-Poch, Miquel; Kuhlberg, Mark, eds., "Research and Development in the Finnish Wood Processing and Paper Industry, c. 1850–1990", Technological Transformation in the Global Pulp and Paper Industry 1800–2018 (Cham: Springer International Publishing) 23: 35–64, doi:10.1007/978-3-319-94962-8_3, ISBN 978-3-319-94961-1, http://link.springer.com/10.1007/978-3-319-94962-8_3. Retrieved 2023-04-13 
  39. 39.0 39.1 Technology Partnerships Office (31 July 2019). "Definition of Manufacturing-related R&D". National Institute of Standards and Technology. https://www.nist.gov/tpo/definition-manufacturing-related-rd. Retrieved 14 April 2023. 
  40. "Mondelez International Breaks Ground for New Research & Development Center in Poland". Mondelez International. 8 June 2016. https://ir.mondelezinternational.com/news-releases/news-release-details/mondelez-international-breaks-ground-new-research-development. Retrieved 13 April 2023. 
  41. "Why You Need A Commercial Formula". BevSource. 13 August 2022. https://www.bevsource.com/news/why-you-need-commercial-formula. 
  42. Gude, T. (2019). "Solutions Commonly Applied in Industry and Outsourced to Expert Laboratories". In Suman, M.. Food Contact Materials Analysis: Mass Spectrometry Techniques. Royal Society of Chemistry. doi:10.1039/9781788012973-00245. ISBN 9781788017190. 
  43. "Hartwick College Center for Craft Food & Beverage". Hartwick College. https://www.hartwick.edu/about-us/center-for-craft-food-and-beverage/. Retrieved 13 April 2023. 
  44. Jain, Ravi; Triandis, Harry Charalambos; Weick, Cynthia Wagner (2010). "Chapter 1: R&D Organizations and Research Categories". Managing research, development and innovation: Managing the unmanageable (3rd ed.). Hoboken, N.J: Wiley. pp. 8. ISBN 978-0-470-40412-6. https://books.google.com/books?id=nSgebaFKwvMC&pg=PA8. 
  45. Jain, Ravi; Triandis, Harry Charalambos; Weick, Cynthia Wagner (2010). "Chapter 12: Models for Implementing Incremental and Radical Innovation". Managing research, development and innovation: Managing the unmanageable (3rd ed.). Hoboken, N.J: Wiley. pp. 240–241. ISBN 978-0-470-40412-6. https://books.google.com/books?id=nSgebaFKwvMC&pg=PA240. 
  46. 46.0 46.1 Dupont, R. Ryan; Ganesan, Kumar; Theodore, Louis (2017). Pollution prevention: sustainability, industrial ecology, and green engineering (Second edition ed.). Boca Raton: CRC Press, Taylor & Francis Group, CRC Press is an imprint of the Taylor & Francis Group, an informa business. pp. 382. ISBN 978-1-4987-4954-1. https://books.google.com/books?id=3m4NDgAAQBAJ&pg=PA382. 
  47. 47.0 47.1 47.2 Wang, Lawrence K.; Wang, Mu-Hao Sung; Hung, Yung-Tse, eds. (2022) (in en). Waste Treatment in the Biotechnology, Agricultural and Food Industries: Volume 1. Handbook of Environmental Engineering. 26. Cham: Springer International Publishing. pp. 108–9. doi:10.1007/978-3-031-03591-3. ISBN 978-3-031-03589-0. https://books.google.com/books?id=JxaIEAAAQBAJ&pg=PA108. 
  48. 48.0 48.1 Committee on Environment and Public Works (28 September 2000). "Federal Formulated Fuels Act of 2000: Report of the Committee on Environment and Public Works, United States Senate". U.S. Government Printing Office. https://books.google.com/books?id=dk-gi6ZZ_KsC&pg=PA1. Retrieved 13 April 2023. 
  49. 49.0 49.1 World Health Organization (2022) (in en). Reformulation of food and beverage products for healthier diets: policy brief. Geneva: World Health Organization. ISBN 978-92-4-003991-9. https://apps.who.int/iris/handle/10665/355755. 
  50. 50.0 50.1 Raikos, Vassilios; Ranawana, Viren, eds. (2019) (in en). Reformulation as a Strategy for Developing Healthier Food Products: Challenges, Recent Developments and Future Prospects. Cham: Springer International Publishing. doi:10.1007/978-3-030-23621-2. ISBN 978-3-030-23620-5. https://books.google.com/books?id=zkG1DwAAQBAJ&pg=PA1. 
  51. 51.0 51.1 Lechevalier, Sébastien, ed. (2019) (in en). Innovation Beyond Technology: Science for Society and Interdisciplinary Approaches. Creative Economy. Singapore: Springer Singapore. pp. 133–7. doi:10.1007/978-981-13-9053-1. ISBN 978-981-13-9052-4. https://books.google.com/books?id=Sx2nDwAAQBAJ&pg=PA133. 
  52. 52.0 52.1 52.2 Raj, B.; Jayakumar, T.; Thavasimuthu, M. (2014). Practical Non-Destructive Testing (Ninth Reprint, 3rd ed.). Narosa Publishing House Pvt. Ltd. ISBN 9788173197970. https://archive.org/details/practicalnondest0000rajb. 
  53. Huang, Songling; Wang, Shen (2016). "Chapter 1: The Electromagnetic Ultrasonic Guided Wave Testing" (in en). New Technologies in Electromagnetic Non-destructive Testing. Springer Series in Measurement Science and Technology. Singapore: Springer Singapore. pp. 1. doi:10.1007/978-981-10-0578-7. ISBN 978-981-10-0577-0. https://books.google.com/books?id=YuCvCwAAQBAJ&printsec=frontcover. 
  54. Tian, Guiyun; Gao, Bin, eds. (29 September 2020). Electromagnetic Non-Destructive Evaluation (XXIII). Studies in Applied Electromagnetics and Mechanics. 45. IOS Press. doi:10.3233/saem45. ISBN 978-1-64368-118-4. https://books.google.com/books?id=by4NEAAAQBAJ&printsec=frontcover. 
  55. Jha, Shyam N., ed. (2010) (in en). Nondestructive Evaluation of Food Quality: Theory and Practice. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-15796-7. ISBN 978-3-642-15795-0. https://books.google.com/books?id=RXIJu3TRPWEC&printsec=frontcover. 
  56. Huebschen, Gerhard, ed. (2016). Materials characterization using nondestructive evaluation (NDE) methods. Woodhead Publishing series in electronic and optical materials. Amsterdam ; Boston: Elsevier/Woodhead Publishing. ISBN 978-0-08-100040-3. OCLC 932174125. https://books.google.com/books?id=ZR1rBgAAQBAJ&printsec=frontcover. 
  57. 57.0 57.1 57.2 57.3 Subramaniam, Persis, ed. (2016). The stability and shelf life of food. Woodhead Publishing Series in Food Science, Technology and Nutrition (Second edition ed.). Amsterdam: Elsevier/WP, Woodhead Publishing. ISBN 978-0-08-100436-4. OCLC 956922925. https://www.worldcat.org/title/mediawiki/oclc/956922925. 
  58. Komitopoulou, E. (2011). "Microbiological challenge testing of food". In Kilcast, David; Subramaniam, Persis. Food and beverage stability and shelf life. Woodhead Publishing Series in Food Science, Technology and Nutrition. Oxford: WP, Woodhead Publ. pp. 507–526. ISBN 978-0-85709-254-0. OCLC 838321011. https://www.worldcat.org/title/mediawiki/oclc/838321011. 
  59. 59.0 59.1 59.2 Chen, S.-C. (2018). "Chapter 12: Container Closure Integrity Testing of Primary Containers for Parenteral Products". In Warne, Nicholas W.; Mahler, Hanns-Christian (in en). Challenges in Protein Product Development. AAPS Advances in the Pharmaceutical Sciences Series. 38. Cham: Springer International Publishing. pp. 257–290. doi:10.1007/978-3-319-90603-4. ISBN 978-3-319-90601-0. https://books.google.com/books?id=LyVhDwAAQBAJ&pg=PA264&dq=Stability,+cycle,+and+challenge+testing. 
  60. Baughan, Joan Sylvain, ed. (2021). Global Legislation for Food Contact Materials. Woodhead Publishing Series in Food Science, Technology and Nutrition (Second edition ed.). Oxford: Woodhead Publishing. ISBN 978-0-12-821181-6. OCLC on1272898230. https://www.worldcat.org/title/mediawiki/oclc/on1272898230. 
  61. Balogh, M.P. (2011). "Testing the Critical Interface: Leachables and Extractables". LCGC North America 29 (6): 492–501. https://www.chromatographyonline.com/view/testing-critical-interface-leachables-and-extractables. 
  62. "Extractables and leachables testing (E&Ls)". Leeder Analytical. https://leeder-analytical.com/extractables-and-leachables-testing/. Retrieved 14 April 2023. 
  63. "What Do I Need To Know About Nutrition Testing for My Beverage Brand?". BevSource. 14 April 2023. https://www.bevsource.com/news/what-do-i-need-know-about-nutrition-testing-my-beverage-brand. 
  64. "Code of Practice on Food Allergen Management for Food Business Operators, CXC 80-2020" (PDF). Codex Alimentarius. 2020. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXC%2B80-2020%252FCXC_080e.pdf. Retrieved 14 April 2023. 
  65. Daniel, D. (October 2021). "poka-yoke". TechTarget ERP - Definition. https://www.techtarget.com/searcherp/definition/poka-yoke. Retrieved 14 April 2023. 
  66. Dogan, O.; Cebeci, U. (2021). "Chapter 1: An Integrated Quality Tools Approach for New Product Development". In García Alcaraz, Jorge Luis; Sánchez-Ramírez, Cuauhtémoc; Gil López, Alfonso Jesús (in en). Techniques, Tools and Methodologies Applied to Quality Assurance in Manufacturing. Cham: Springer International Publishing. pp. 3–22. doi:10.1007/978-3-030-69314-5. ISBN 978-3-030-69313-8. https://link.springer.com/10.1007/978-3-030-69314-5. 
  67. Baukh, O. (14 October 2020). "Pre-production processes in garment manufacturing". Techpacker. https://techpacker.com/blog/manufacturing/pre-production-processes-in-garment-manufacturing/. Retrieved 14 April 2023. 
  68. "Filing a Pre-manufacture Notice with EPA". Reviewing New Chemicals under the Toxic Substances Control Act (TSCA). U.S. Environmental Protection Agency. 26 October 2022. https://www.epa.gov/reviewing-new-chemicals-under-toxic-substances-control-act-tsca/filing-pre-manufacture-notice-epa. Retrieved 14 April 2023.